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1. Let an analytic function f : Br(0) r {0} → C have an essential singularity at 0.

(a) Prove that the function f(z) + f(z2) cannot have a removable singularity at 0.

(b) Can it happen that the function f(z) + f(z2) has a pole at 0?

Solution: (a) Let
∑+∞
n=−∞ anz

n be the Laurent series of f in the punctured disc
Br(0) r {0} and recall that this series converges uniformly on compacts. Hence,

f(z) + f(z2) =
∑

n=−∞
cnz

n +

+∞∑
n=−∞

cnz
2n =

+∞∑
k=−∞

c2k+1z
2k+1 +

+∞∑
k=−∞

(c2k + ck)z2k

and these series converge uniformly on compact subsets of the punctured disc
Bmin(r,

√
r)(0) r {0}. Suppose that this function has a removable singularity at 0.

Then, c2k+1 = 0 and c2k = −ck for all k < 0. It is easy to see that these conditions
imply cn = 0 for all n < 0, which means that the function f also has a removable
singularity at 0, a contradiction.

(b) Suppose now that the function f(z) + f(z2) has a pole at 0. This means that
there is N ∈ N such that c2k+1 = 0 and c2k = −ck for all k ≤ −N . As f has an
essential singularity at 0 we know that infinitely many coefficients cn with n < 0
do not vanish. Hence, there exists m < 0 such that cm 6= 0 and c2km = (−1)kcm.

In particular, this means that the series
∑+∞
n=−∞ cnz

n cannot converge for |z| < 1,

which is a contradiction. Therefore, the function f(z) + f(z2) cannot have a pole
at 0 and has to have an essential singularity.

2. Let a function f : Dr {0} → C be analytic in the punctured unit disc D = {z ∈
C : |z| < 1} and continuous in Dr {0}. Assume that f has a simple pole at 0 and
that Im f(z) ≥ 0 for all for all z ∈ ∂D (i.e., for all z ∈ C with |z| = 1). Prove that
there exists z ∈ D such that f(z) = −i.

Solution: It follows from the argument principle that the number of zeroes of
the meromorphic function f + i minus the number of poles (both counted with
multiplicities) in the unit disc D equals the winding number Wf(∂D)(0) of the closed

curve γ(θ) = f(eiθ) + i, θ ∈ [0, 2π] around 0. As Im(f(eiθ) + i) ≥ 1, this number
is 0. The function f+i has exactly one simple pole in D and thus must have exactly
one zero, which means that the equation f(z) + i has a unique solution in D.

Remark. One can write this solution as follows; note that this is nothing but
reproving of the argument principle in the given context. Let Dr := rD = B(0, r)
be the disc of radius r centered at 0 and 0 < ε � 1. The number of solutions
(counted with multiplicities) of the equation f(z) = −i in the annulus D1−ε r Dε
equals

1

2πi

(∮
∂D1−ε

f ′(z)dz

f(z) + i
−
∮
∂Dε

f ′(z)dz

f(z) + i

)
.

The first term equals 0 since Im(f(z) + i) ≥ 1
2 for all z ∈ ∂D1−ε (provided that ε

is small enough) and hence the increment of log(f(z) + i) along ∂D1−ε is zero. To
compute the second term (again, for small enough ε), note that f(z) cannot attain



2

the value −i in a small vicinity of 0 and that the function f ′(z)/(f(z) + i) has a

simple pole at 0 with residue −1. Therefore, 1
2πi

∮
∂Dε

f ′(z)dz
f(z)+i = −1 and hence the

equation f(z) + i = 0 has a (unique) solution in the punctured disc Dr {0}.
Alternative solution: Suppose that f(z) 6= −i for all z ∈ D r {0}. Consider a
Möbius mapping φ(z) := z−i

z+i and note that φ maps the upper half-plane H onto

the unit disc D. Denote g := φ ◦ f : D r {0} → C. This function is holomorphic
in the punctured disc and has a removable singularity at 0: if we denote g(z) := 1,
then g becomes continuous at 0. However, we know that Im f(z) ≥ 0 and hence
|g(z)| ≤ 1 for z ∈ ∂D. This contradicts to the maximum principle: it follows that
g(z) = 1 for all z ∈ D, which is impossible since f(z) 6=∞ for z 6= 0.

3. Let U ( C be an open set such that 0 ∈ U and f : U → U be an analytic
function such that f(0) = 0 and f ′(0) = 1. Prove that f(z) = z for all z ∈ U
(a) assuming that U is simply connected;

(b) assuming that U is bounded (but not necessarily simply connected).
[Hint: consider iterations f ◦ f ◦ . . . ◦ f of f . ]

Solution: (a) This is an easy corollary of the Schwarz–Pick lemma and the Rie-
mann uniformization theorem. Namely, let φ : U → D be a conformal mapping
such that f(0) = 0. Then, the function g := φ ◦ f ◦ φ−1 : D→ D satisfies g(0) = 0
and g′(0) = φ′(0)f ′(0)(φ−1)′(0) = f ′(0) = 1. This implies g(z) = z for all z ∈ D
and hence f(z) = z for all z ∈ U .

(b) It is easy to see that all the iterations fn := f ◦ . . .◦f : U → U satisfy the same
conditions fn(0) = 0 and f ′n(0) = 0. Suppose that f is not the identity function and
let m ≥ 2 be the minimal non-zero coefficient in the Taylor expansion of f around
the origin, i.e., f(z) = z + cmz

m + O(zm+1) as z → 0. A simple computation
shows (e.g., by induction) that one has fn(z) = z + ncmz

m + O(zm+1) as z → 0.
This easily leads to a contradiction: e.g., Cauchy’s formula for a small enough (but
fixed) ε gives the identity

ncm =
1

2πi

∮
|z|=ε

fn(z)

zm+1
dz

and these integrals are uniformly (in m) bounded as n→∞ as the values fn(z) ∈ U
are uniformly bounded. (Alternatively, the concluding part of the argument can be
replaced by Montel’s theorem on normal families of analytic functions.)

4. Let f : D→ C be an analytic function in the unit disc D such that f(0) = 1 and
|f(z)| ≤ 2025 for all z ∈ D. Assume that this function has n ≥ 1 zeroes z1, . . . , zn
(listed with multiplicities) in D. Prove that

∏n
k=1 |zk| ≥

1
2025 .

Solution: Recall that the fractional-linear functions z 7→ z−zn
1−znz send the unit

disc D onto itself. Denote g(z) :=
∏n
k=1

z−zn
1−znz and consider the ratio f/g. This

function is analytic in D (since the zeroes of g cancel with those of f) and satisfies
the estimate |f(z)/g(z)| ≤ 2025/|g(z)|. The maximal principle implies that

|f(0)|
|g(0)|

=
1∏n

k=1 |zk|
≤ 2025

min|z|=r |g(z)|
for all r < 1.

It remains to note that min|z|=r |g(z)| → 1 as r ↑ 1 (recall that each factor in the

definition of g sends the unit circle onto the unit circle) and hence
∏n
k=1 |zk| ≥

1
2025 .
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5. Compute the integral

∫ +∞

−∞

x

sinhx
dx via residue calculus.

Solution: Note that f(z) := z/ sinh(z) is a meromorphic function with poles
at the points πim, m ∈ Z r {0} and that sinh(z + πi) = − sinh(z). (Note that
the singularity at z = 0 is removable.) For R � 1 and 0 < ε � 1 consider
the closed contour γ = γ(ε,R) in the complex plane formed by the horizontal
segment γ1 := [−R;R], vertical segment γ2 := [R;R + πi], horizontal segment
γ3 := [R + πi, ε + πi], half-circle γ4 := {z = πi + εeiθ, θ ∈ [0,−π]}, horizontal
segment γ5 := [−ε + πi;−R + πi] and vertical segment γ6 := [−R + πi;−R]. The
function z/ sinh z does not have singularities inside γ, hence∮

γ

zdz

sinh(z)
= 0 .

As R→ +∞ (first) and ε→ 0 (after that), we have the following:

•
∫
γ1
f(z)dz → I :=

∫ +∞
−∞

xdx
sinh x , the quantity that we want to compute;

• contribution of vertical segments vanishes: |
∫
γ2
f(z)dz|+ |

∫
γ6
f(z)dz| → 0

since | sinh(z)| = 1
2 |e

z − e−z| ≥ 1
2 (e|Re z| − e−|Re z|);

•
∫
γ3∪γ5 f(z)dz →

R→+∞
−
∫
Rr[−ε;ε]

x+πi
− sinh xdx =

∫
Rr[−ε;ε]

x
sinh(x)dx since the con-

tribution of the term πi in the numerator vanishes due to the symmetry,
and the latter integral converges to I as ε→ 0.

Therefore,

2I = − lim
ε→0

∫
γ4

f(z)dz = lim
ε→0

∫ 0

−π
f(πi + εeiθ) · iεeiθdθ

(?)
= πi res

z=πi

z

sinh(z)
= πi · πi

cosh(πi)
= π2 .

(Recall that the equality (?) follows from the fact that f has a simple pole at z = πi
and hence has the expansion f(πi + εeiθ) = ε−1e−iθ · resz=πi f(z) +O(1) as ε→ 0.)

This concludes the computation: I = π2

2 .

Remark: Many other standard ideas can be used: e.g., change of the variable w = ez

leads to the integral 2
∫ +∞
0

log x
x2−1dx, which can be evaluated by similar methods.


