Department of Mathematics, University of Michigan Complex Analysis Qualifying Review Exam

May 5, 2025, 9:00am-noon

Let an analytic function f : B_r(0) \ {0} → C have an essential singularity at 0.
(a) Prove that the function f(z) + f(z²) cannot have a removable singularity at 0.
(b) Can it happen that the function f(z) + f(z²) has a pole at 0?

Solution: (a) Let $\sum_{n=-\infty}^{+\infty} a_n z^n$ be the Laurent series of f in the punctured disc $B_r(0) \setminus \{0\}$ and recall that this series converges uniformly on compacts. Hence,

$$f(z) + f(z^2) = \sum_{n = -\infty} c_n z^n + \sum_{n = -\infty}^{+\infty} c_n z^{2n} = \sum_{k = -\infty}^{+\infty} c_{2k+1} z^{2k+1} + \sum_{k = -\infty}^{+\infty} (c_{2k} + c_k) z^{2k}$$

and these series converge uniformly on compact subsets of the punctured disc $B_{\min(r,\sqrt{r})}(0) \setminus \{0\}$. Suppose that this function has a removable singularity at 0. Then, $c_{2k+1} = 0$ and $c_{2k} = -c_k$ for all k < 0. It is easy to see that these conditions imply $c_n = 0$ for all n < 0, which means that the function f also has a removable singularity at 0, a contradiction.

(b) Suppose now that the function $f(z) + f(z^2)$ has a pole at 0. This means that there is $N \in \mathbb{N}$ such that $c_{2k+1} = 0$ and $c_{2k} = -c_k$ for all $k \leq -N$. As f has an essential singularity at 0 we know that infinitely many coefficients c_n with n < 0do not vanish. Hence, there exists m < 0 such that $c_m \neq 0$ and $c_{2^k m} = (-1)^k c_m$. In particular, this means that the series $\sum_{n=-\infty}^{+\infty} c_n z^n$ cannot converge for |z| < 1, which is a contradiction. Therefore, the function $f(z) + f(z^2)$ cannot have a pole at 0 and has to have an essential singularity.

2. Let a function $f: \overline{\mathbb{D}} \setminus \{0\} \to \mathbb{C}$ be analytic in the punctured unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and continuous in $\overline{\mathbb{D}} \setminus \{0\}$. Assume that f has a simple pole at 0 and that $\operatorname{Im} f(z) \ge 0$ for all for all $z \in \partial \mathbb{D}$ (i.e., for all $z \in \mathbb{C}$ with |z| = 1). Prove that there exists $z \in \mathbb{D}$ such that f(z) = -i.

Solution: It follows from the argument principle that the number of zeroes of the meromorphic function f + i minus the number of poles (both counted with multiplicities) in the unit disc \mathbb{D} equals the winding number $W_{f(\partial \mathbb{D})}(0)$ of the closed curve $\gamma(\theta) = f(e^{i\theta}) + i$, $\theta \in [0, 2\pi]$ around 0. As $\operatorname{Im}(f(e^{i\theta}) + i) \geq 1$, this number is 0. The function f + i has exactly one simple pole in \mathbb{D} and thus must have exactly one zero, which means that the equation f(z) + i has a unique solution in \mathbb{D} .

Remark. One can write this solution as follows; note that this is nothing but reproving of the argument principle in the given context. Let $\mathbb{D}_r := r\mathbb{D} = B(0, r)$ be the disc of radius r centered at 0 and $0 < \varepsilon \ll 1$. The number of solutions (counted with multiplicities) of the equation f(z) = -i in the annulus $\mathbb{D}_{1-\varepsilon} \setminus \overline{\mathbb{D}_{\varepsilon}}$ equals

$$\frac{1}{2\pi\mathrm{i}} \left(\oint_{\partial \mathbb{D}_{1-\varepsilon}} \frac{f'(z)dz}{f(z)+\mathrm{i}} - \oint_{\partial \mathbb{D}_{\varepsilon}} \frac{f'(z)dz}{f(z)+\mathrm{i}} \right).$$

The first term equals 0 since $\operatorname{Im}(f(z) + i) \geq \frac{1}{2}$ for all $z \in \partial \mathbb{D}_{1-\varepsilon}$ (provided that ε is small enough) and hence the increment of $\log(f(z) + i)$ along $\partial \mathbb{D}_{1-\varepsilon}$ is zero. To compute the second term (again, for small enough ε), note that f(z) cannot attain

the value -i in a small vicinity of 0 and that the function f'(z)/(f(z) + i) has a simple pole at 0 with residue -1. Therefore, $\frac{1}{2\pi i} \oint_{\partial \mathbb{D}_{\varepsilon}} \frac{f'(z)dz}{f(z)+i} = -1$ and hence the equation f(z) + i = 0 has a (unique) solution in the punctured disc $\mathbb{D} \setminus \{0\}$.

Alternative solution: Suppose that $f(z) \neq -i$ for all $z \in \mathbb{D} \setminus \{0\}$. Consider a Möbius mapping $\phi(z) := \frac{z-i}{z+i}$ and note that ϕ maps the upper half-plane \mathbb{H} onto the unit disc \mathbb{D} . Denote $g := \phi \circ f : \overline{\mathbb{D}} \setminus \{0\} \to \mathbb{C}$. This function is holomorphic in the punctured disc and has a *removable* singularity at 0: if we denote g(z) := 1, then g becomes continuous at 0. However, we know that $\operatorname{Im} f(z) \geq 0$ and hence $|g(z)| \leq 1$ for $z \in \partial \mathbb{D}$. This contradicts to the maximum principle: it follows that g(z) = 1 for all $z \in \mathbb{D}$, which is impossible since $f(z) \neq \infty$ for $z \neq 0$.

3. Let $U \subsetneq \mathbb{C}$ be an open set such that $0 \in U$ and $f: U \to U$ be an analytic function such that f(0) = 0 and f'(0) = 1. Prove that f(z) = z for all $z \in U$

(a) assuming that U is simply connected;

(b) assuming that U is bounded (but not necessarily simply connected).

[*Hint:* consider iterations $f \circ f \circ \ldots \circ f$ of f.]

Solution: (a) This is an easy corollary of the Schwarz–Pick lemma and the Riemann uniformization theorem. Namely, let $\phi : U \to \mathbb{D}$ be a conformal mapping such that f(0) = 0. Then, the function $g := \phi \circ f \circ \phi^{-1} : \mathbb{D} \to \mathbb{D}$ satisfies g(0) = 0 and $g'(0) = \phi'(0)f'(0)(\phi^{-1})'(0) = f'(0) = 1$. This implies g(z) = z for all $z \in \mathbb{D}$ and hence f(z) = z for all $z \in U$.

(b) It is easy to see that all the iterations $f_n := f \circ \ldots \circ f : U \to U$ satisfy the same conditions $f_n(0) = 0$ and $f'_n(0) = 0$. Suppose that f is not the identity function and let $m \ge 2$ be the minimal non-zero coefficient in the Taylor expansion of f around the origin, i.e., $f(z) = z + c_m z^m + O(z^{m+1})$ as $z \to 0$. A simple computation shows (e.g., by induction) that one has $f_n(z) = z + nc_m z^m + O(z^{m+1})$ as $z \to 0$. This easily leads to a contradiction: e.g., Cauchy's formula for a small enough (but fixed) ε gives the identity

$$nc_m = \frac{1}{2\pi i} \oint_{|z|=\varepsilon} \frac{f_n(z)}{z^{m+1}} dz$$

and these integrals are uniformly (in m) bounded as $n \to \infty$ as the values $f_n(z) \in U$ are uniformly bounded. (Alternatively, the concluding part of the argument can be replaced by Montel's theorem on normal families of analytic functions.)

4. Let $f: \mathbb{D} \to \mathbb{C}$ be an analytic function in the unit disc \mathbb{D} such that f(0) = 1 and $|f(z)| \leq 2025$ for all $z \in \mathbb{D}$. Assume that this function has $n \geq 1$ zeroes z_1, \ldots, z_n (listed with multiplicities) in \mathbb{D} . Prove that $\prod_{k=1}^n |z_k| \geq \frac{1}{2025}$.

Solution: Recall that the fractional-linear functions $z \mapsto \frac{z-z_n}{1-\overline{z}_n z}$ send the unit disc \mathbb{D} onto itself. Denote $g(z) := \prod_{k=1}^n \frac{z-z_n}{1-\overline{z}_n z}$ and consider the ratio f/g. This function is analytic in \mathbb{D} (since the zeroes of g cancel with those of f) and satisfies the estimate $|f(z)/g(z)| \leq 2025/|g(z)|$. The maximal principle implies that

$$\frac{|f(0)|}{|g(0)|} = \frac{1}{\prod_{k=1}^{n} |z_k|} \le \frac{2025}{\min_{|z|=r} |g(z)|} \quad \text{for all } r < 1.$$

It remains to note that $\min_{|z|=r} |g(z)| \to 1$ as $r \uparrow 1$ (recall that each factor in the definition of g sends the unit circle onto the unit circle) and hence $\prod_{k=1}^{n} |z_k| \ge \frac{1}{2025}$.

5. Compute the integral $\int_{-\infty}^{+\infty} \frac{x}{\sinh x} dx$ via residue calculus.

Solution: Note that $f(z) := z/\sinh(z)$ is a meromorphic function with poles at the points $\pi i m$, $m \in \mathbb{Z} \setminus \{0\}$ and that $\sinh(z + \pi i) = -\sinh(z)$. (Note that the singularity at z = 0 is removable.) For $R \gg 1$ and $0 < \varepsilon \ll 1$ consider the closed contour $\gamma = \gamma(\varepsilon, R)$ in the complex plane formed by the horizontal segment $\gamma_1 := [-R; R]$, vertical segment $\gamma_2 := [R; R + \pi i]$, horizontal segment $\gamma_3 := [R + \pi i, \varepsilon + \pi i]$, half-circle $\gamma_4 := \{z = \pi i + \varepsilon e^{i\theta}, \theta \in [0, -\pi]\}$, horizontal segment $\gamma_5 := [-\varepsilon + \pi i; -R + \pi i]$ and vertical segment $\gamma_6 := [-R + \pi i; -R]$. The function $z/\sinh z$ does not have singularities inside γ , hence

$$\oint_{\gamma} \frac{zdz}{\sinh(z)} = 0$$

As $R \to +\infty$ (first) and $\varepsilon \to 0$ (after that), we have the following:

- $\int_{\gamma_1} f(z)dz \to I := \int_{-\infty}^{+\infty} \frac{xdx}{\sinh x}$, the quantity that we want to compute; contribution of vertical segments vanishes: $|\int_{\gamma_2} f(z)dz| + |\int_{\gamma_6} f(z)dz| \to 0$ since $|\sinh(z)| = \frac{1}{2}|e^z e^{-z}| \ge \frac{1}{2}(e^{|\operatorname{Re} z|} e^{-|\operatorname{Re} z|});$ $\int_{\gamma_3 \cup \gamma_5} f(z)dz \xrightarrow[R \to +\infty]{} \int_{\mathbb{R} \smallsetminus [-\varepsilon;\varepsilon]} \frac{x + \pi i}{-\sinh x} dx = \int_{\mathbb{R} \smallsetminus [-\varepsilon;\varepsilon]} \frac{x}{\sinh(x)} dx$ since the con-
- tribution of the term πi in the numerator vanishes due to the symmetry, and the latter integral converges to I as $\varepsilon \to 0$.

Therefore,

$$2I = -\lim_{\varepsilon \to 0} \int_{\gamma_4} f(z) dz = \lim_{\varepsilon \to 0} \int_{-\pi}^0 f(\pi \mathbf{i} + \varepsilon e^{\mathbf{i}\theta}) \cdot \mathbf{i}\varepsilon e^{\mathbf{i}\theta} d\theta$$
$$\stackrel{(\star)}{=} \pi \mathbf{i} \operatorname{res}_{z=\pi \mathbf{i}} \frac{z}{\sinh(z)} = \pi \mathbf{i} \cdot \frac{\pi \mathbf{i}}{\cosh(\pi \mathbf{i})} = \pi^2$$

(Recall that the equality (*) follows from the fact that f has a simple pole at $z = \pi i$ and hence has the expansion $f(\pi i + \varepsilon e^{i\theta}) = \varepsilon^{-1} e^{-i\theta} \cdot \operatorname{res}_{z=\pi i} f(z) + O(1)$ as $\varepsilon \to 0$.) This concludes the computation: $I = \frac{\pi^2}{2}$.

Remark: Many other standard ideas can be used: e.g., change of the variable $w = e^z$ leads to the integral $2\int_0^{+\infty} \frac{\log x}{x^2-1} dx$, which can be evaluated by similar methods.