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May 5, 2025, 9:00am-noon

1. Let an analytic function f : B,(0) ~ {0} — C have an essential singularity at 0.
(a) Prove that the function f(z)+ f(2?) cannot have a removable singularity at 0.
(b) Can it happen that the function f(z) + f(2?) has a pole at 07

Solution: (a) Let 27> a,2" be the Laurent series of f in the punctured disc

n=—oo

B,(0) ~ {0} and recall that this series converges uniformly on compacts. Hence,

+oo +o0 +oo
f(2)+ f(z%) = Z 2" + Z cn 2" = Z Copy122F T 4 Z (cor + cx)2%*
n=—oo n=-—o0o k=—o0 k=—o0

and these series converge uniformly on compact subsets of the punctured disc
B in(r,)(0) ~ {0}. Suppose that this function has a removable singularity at 0.
Then, cor+1 = 0 and cop, = —cy, for all £ < 0. It is easy to see that these conditions
imply ¢, = 0 for all n < 0, which means that the function f also has a removable
singularity at 0, a contradiction.

(b) Suppose now that the function f(z) + f(2?) has a pole at 0. This means that
there is N € N such that cog11 = 0 and co, = —¢i for all K < —N. As f has an
essential singularity at 0 we know that infinitely many coefficients ¢,, with n < 0
do not vanish. Hence, there exists m < 0 such that ¢, # 0 and cor,,, = (—1)¥c,,.
In particular, this means that the series Z:io_ o Cn2™ cannot converge for [z| <1,
which is a contradiction. Therefore, the function f(z) + f(22) cannot have a pole
at 0 and has to have an essential singularity.

2. Let a function f : D~ {0} — C be analytic in the punctured unit disc D = {z €
C: |z| < 1} and continuous in D . {0}. Assume that f has a simple pole at 0 and
that Im f(z) > 0 for all for all z € 9D (i.e., for all z € C with |z| = 1). Prove that
there exists z € D such that f(z) = —i.

Solution: It follows from the argument principle that the number of zeroes of
the meromorphic function f + i minus the number of poles (both counted with
multiplicities) in the unit disc D equals the winding number W sp)(0) of the closed
curve v(0) = f(e'?) +1i, 6 € [0,2n] around 0. As Im(f(e!?) +1i) > 1, this number
is 0. The function f+1i has exactly one simple pole in D and thus must have exactly
one zero, which means that the equation f(z) +1i has a unique solution in D.

Remark. One can write this solution as follows; note that this is nothing but
reproving of the argument principle in the given context. Let D, := rD = B(0,r)
be the disc of radius r centered at 0 and 0 < ¢ < 1. The number of solutions
(counted with multiplicities) of the equation f(z) = —i in the annulus D;_. ~ D,

equals
1( / fd f’(Z)dz>
2mi\Jop,_. f(2)+i  Jop. f(2) +i)°

The first term equals 0 since Im(f(z) +1i) > £ for all z € dD;_. (provided that ¢
is small enough) and hence the increment of log(f(z) + i) along 0D;_. is zero. To
compute the second term (again, for small enough ¢), note that f(z) cannot attain



2

the value —i in a small vicinity of 0 and that the function f/(z)/(f(z) +1i) has a

simple pole at 0 with residue —1. Therefore, % 56811»5 J}((j))iiz = —1 and hence the

equation f(z)+1i= 0 has a (unique) solution in the punctured disc D ~ {0}.
Alternative solution: Suppose that f(z) # —i for all z € D ~\ {0}. Consider a

Mobius mapping ¢(z) = z—jri and note that ¢ maps the upper half-plane H onto

the unit disc D. Denote g := ¢ o f : D~ {0} — C. This function is holomorphic
in the punctured disc and has a removable singularity at 0: if we denote g(z) := 1,
then g becomes continuous at 0. However, we know that Im f(z) > 0 and hence
lg(z)] <1 for z € OD. This contradicts to the maximum principle: it follows that
g(z) =1 for all z € D, which is impossible since f(z) # oo for z # 0.

3. Let U € C be an open set such that 0 € U and f : U — U be an analytic
function such that f(0) =0 and f/(0) = 1. Prove that f(z) =z forall z € U

(a) assuming that U is simply connected;

(b) assuming that U is bounded (but not necessarily simply connected).
[ Hint: consider iterations fo fo...o f of f.]

Solution: (a) This is an easy corollary of the Schwarz—Pick lemma and the Rie-
mann uniformization theorem. Namely, let ¢ : U — D be a conformal mapping
such that f(0) = 0. Then, the function g := ¢po fo ¢~ : D — D satisfies g(0) =0
and ¢'(0) = ¢'(0)f'(0)(¢~1)(0) = £/(0) = 1. This implies g(z) = z for all z € D
and hence f(z) =z for all z € U.

(b) It is easy to see that all the iterations f, := fo...of: U — U satisfy the same
conditions f,(0) = 0 and f/,(0) = 0. Suppose that f is not the identity function and
let m > 2 be the minimal non-zero coefficient in the Taylor expansion of f around
the origin, i.e., f(2) = 2z + ¢pz™ + O(z™T1) as z — 0. A simple computation
shows (e.g., by induction) that one has f,(z) = z + nc, 2™ + O(z™*!) as z — 0.
This easily leads to a contradiction: e.g., Cauchy’s formula for a small enough (but
fixed) e gives the identity

1 fn(2)

T ori Zm+1

dz

Nem,
|z|=¢
and these integrals are uniformly (in m) bounded as n — oo as the values f,(z) € U
are uniformly bounded. (Alternatively, the concluding part of the argument can be
replaced by Montel’s theorem on normal families of analytic functions.)

4. Let f: D — C be an analytic function in the unit disc D such that f(0) = 1 and
|f(2)] <2025 for all z € D. Assume that this function has n > 1 zeroes z1,..., 2,

(listed with multiplicities) in . Prove that []j_; |2k| > 5555
Solution: Recall that the fractional-linear functions z +— == send the unit
disc D onto itself. Denote g(z) := [[;_; #== and consider the ratio f/g. This

function is analytic in D (since the zeroes of g cancel with those of f) and satisfies
the estimate |f(2)/g(z)| < 2025/|g(z)|. The maximal principle implies that

lfO)] 1 < 2025
9O Tl [zl — mingz— [g(2)|
It remains to note that min|;—. [g(z)| — 1 as 7 1 1 (recall that each factor in the

definition of g sends the unit circle onto the unit circle) and hence [Tj_; |2k] > 5055 -

for all r < 1.




—+oo
5. Compute the integral / - dx via residue calculus.
J_oo sinhzx
Solution: Note that f(z) := z/sinh(z) is a meromorphic function with poles
at the points wim, m € Z ~ {0} and that sinh(z + 7i) = —sinh(z). (Note that

the singularity at z = 0 is removable.) For R > 1 and 0 < ¢ <« 1 consider
the closed contour v = (g, R) in the complex plane formed by the horizontal

segment v, := [—R; R], vertical segment o := [R; R + 7i], horizontal segment
v3 = [R + 7i,e + 7i], half-circle 74 := {z = 7i + e€'?, § € [0,—n]}, horizontal
segment 75 := [—¢ + 7i; —R + 7i] and vertical segment ¢ := [-R + 7i; —R]. The

function z/sinh z does not have singularities inside v, hence

zdz
ﬁ sinh(z) 0

As R — +oo (first) and € — 0 (after that), we have the following:
. fM f(z)dz — I := f+°° zdz_ the quantity that we want to compute;

—oo sinhz?

e contribution of vertical segments vanishes: | fW f(z)dz| + \f% f(z)dz| =0
since |sinh(z)| = %|ez —e* > %(e'Rcz| — eI Rezly;
+mi - .
hd f"y3U"Y5 f(Z)dZ R:roo - f]R\[fe;s] —zsinﬂ;w dr = f]R\[fe;s] sin]i(m) dx since the con-
tribution of the term 7i in the numerator vanishes due to the symmetry,
and the latter integral converges to I as ¢ — 0.

Therefore,

0
2 = — lim/ f(z)dz = lim f(mi+ e€l?) -iceldh
8!

e—0 e—0 -
(*) . z . i 9
= 7i res — =i~ ~ =7".
z=mi sinh(z) cosh(ri)

(Recall that the equality () follows from the fact that f has a simple pole at z = 7i
and hence has the expansion f(mi+¢ce'?) = e~ le ™ .res,_; f(2) + O(1) as e — 0.)
7'{'2

This concludes the computation: I = %-.

Remark: Many other standard ideas can be used: e.g., change of the variable w = e*

leads to the integral 2 f0+oo ;2{ T dx, which can be evaluated by similar methods.




