Problem 1. Let

$$
1 \rightarrow A \xrightarrow{\alpha} G \xrightarrow{\beta} B \rightarrow 1
$$

be a short exact sequence of groups, with A and B abelian. Suppose that $\alpha(A)$ is central in G, and let h be an element of G. Show that $g \mapsto h g h^{-1} g^{-1}$ is a group homomorphism from G to G.
Solution. We may as well identify A with its image, and thus regard it as a cenral subgroup of G. Fix $h \in G$ and let $\phi(g)=h g h^{-1} g^{-1}$. Since B is abelian, the image of $\phi(g)$ in B is trivial, meaning that $\phi(g)$ actually belongs to A. We have

$$
\phi\left(g g^{\prime}\right)=h g g^{\prime} h^{-1}\left(g^{\prime}\right)^{-1} g^{-1}=\left(h g h^{-1}\right) \phi\left(g^{\prime}\right) g^{-1}=\phi(g) \phi\left(g^{\prime}\right),
$$

where in the final step we commuted $\phi\left(g^{\prime}\right)$ with g^{-1}, which is allowed since $\phi\left(g^{\prime}\right) \in A$ is central.

Problem 2. Let r, s and t be positive integers, and let G be the group generated by elements a and b modulo the relations $a^{r}=b^{s}=1, a b a^{-1}=b^{t}$. Show that G is finite.

Solution. An element of G is represented by a word in a and b (we do not need inverses since a and b have finite order). The second relation can be rewritten as $a b=b^{t} a$, which shows that we can move all a 's to the right, that is, every element has the form $b^{i} a^{j}$. By the condition on the orders of a and b, we can take $0 \leq i<r$ and $0 \leq j<s$. Thus G is finite.

Problem 3. Let G be a group of order $4 \cdot 3^{n}$. Show that G is solvable.
Solution. The number of 3-Sylows divides 4 and is $1 \bmod 3$, so is therefore 1 or 4 . If there is a unique 3 -Sylow N then it is normal and solvable (since it is a p-group), and G / N is also solvable (since it has order 4), and so G is solvable.

Suppose that there are four 3-Sylows. The conjugation action of G on the set of 3 -Sylows defines a homomorphism $f: G \rightarrow S_{4}$. The kernel of f cannot contain any 2-Sylow, for then it would normalize all 3-Sylows and they would be normal. So $\operatorname{ker}(f)$ has order 3^{m} or $2 \cdot 3^{m}$. If $\operatorname{ker}(f)$ has order 3^{m} then it is a p-group, and thus solvable. If it has order $2 \cdot 3^{m}$ then its 3-Sylow has index 2 and is thus normal, and so $\operatorname{ker}(f)$ is solvable (as in the first paragraph). Since $\operatorname{im}(f)$ is also solvable (as S_{4} is solvable), it follows that G is solvable.

Problem 4. Let Ω / F be a field extension, let E_{1} and E_{2} be distinct subfields of Ω containing F with $\left[E_{1}: F\right]=\left[E_{2}: F\right]=d$, and let K be the subfield of Ω generated by E_{1} and E_{2}. Show that $2 d \leq[K: F] \leq d^{2}$, and give examples where the extreme values $2 d$ and d^{2} each occur.

Solution. Since E_{1} and E_{2} are algebraic extensions of F, every element of K can be written in the form $\sum_{i=1}^{i} a_{i} b_{i}$ with $a_{i} \in E_{1}$ and $b_{i} \in E_{2}$. It follows that an F-basis
for E_{2} will span K as an E_{1}-vector space, i.e., $\left[K: E_{1}\right] \leq\left[E_{2}: F\right]=d$. Multiplying by $\left[E_{1}: F\right]=d$ and using the tower law for degrees, we find $[K: F] \leq d^{2}$. On the other hand, K is a proper extension of E_{1} (since E_{1} and E_{2} are distinct), and so $[K: F]=\left[K: E_{1}\right]\left[E_{1}: F\right]=e d$, where $e=\left[K: E_{1}\right]>1$. Thus $[K: F] \geq 2 d$.

Suppose $F=\mathbb{C}(x, y)$ and $E_{1}=\mathbb{C}\left(x^{1 / d}, y\right)$ and $E_{2}=\mathbb{C}\left(x, y^{1 / d}\right)$; these are degree d extensions of F. In this case, $K=\mathbb{C}\left(x^{1 / d}, y^{1 / d}\right)$ is a degree d^{2} extension of F.

Next, let K / F be a Galois extension with Galois group the dihedral group of order $2 d$. For example, one can take $K=\mathbb{C}\left(x^{1 / d}\right)$ and $F=\mathbb{R}(x)$. If E_{1} and E_{2} are the fixed fields of two different reflections then they are degree d extensions that generate K, which has degree $2 d$.

Problem 5. Let p be an odd prime. Let K be a subfield of \mathbb{C} that is Galois over \mathbb{Q} of degree p^{n}. Show that $K \subset \mathbb{R}$.

Solution. Since K is Galois it is stable under complex conjugation c. Since $\left.c\right|_{K}$ is an element of $\operatorname{Gal}(K / \mathbb{Q})$ that squares to the identity and this group has odd order, it follows that $\left.c\right|_{K}$ is already the identity. Thus every element of K is fixed by c, and so $K \subset \mathbb{R}$.

