Algebra II QR — January 2025

Problem 1. Let GG be a finite group of order mn, where m and n are relatively prime
integers, and assume that there exists a subgroup M C G of order m and a subgroup
N C G of order n. Prove that GG is isomorphic to a subgroup of the symmetric group
Sman O M + n elements.

Solution. The action of G on the set G/M of left cosets defines a homomorphism
¢: G — Sy, since n = |G/M|, and the kernel satisfies ker(¢) C M. Similarly, the
action of G on G/N defines a homomorphism ¢ : G — S,,, with ker(y)) C N. Consider
the homomorphism f = (¢,¢): G — S, x S,,. Its kernel ker(f) = ker(¢) N ker(¢))
is contained in M N N, but this group is trivial since its order divides the relatively
prime numbers m and n. Thus f is injective. Composing with the natural injective
homomorphism S,, X S,, < S, 1 (sending (o, 7) to the permutation of n+ m elements
given by o on the first n and 7 on the last m), we obtain an injective homomorphism
G — Spim-

Problem 2. Let Dg be the dihedral group of order 8, i.e. the group of symmetries of a
square. Prove that there is an isomorphism Aut(Dg) = Dg, where Aut(Dg) is the group
of automorphisms of Dyg.

Hint: It may be useful to consider an embedding Dg < D;g.

Solution. First we claim | Aut(Ds)| < 8. To see this, let  and s denote the standard
“rotation” and “reflection” generators of Dg. Then any f € Aut(Ds) is determined by
f(r) and f(s). Moreover, f(r) must have order 4, and hence is contained in {r,r3}.
Similarly, f(s) must have order 2, and hence is contained in {r%, s, sr,sr? sr®}; but
f(s) = r* is not possible, since otherwise f would not be surjective. This means there
are at most 2 - 4 = 8 possible elements f € Aut(Ds).

Now consider a square embedded in an octagon so that its four vertices are alternating
vertices of the octagon. This determines an embedding Dg < D1¢, which sends r ~ 72
and s — s (where we use r and s to also denote the standard generators of D).
The image is normal, as it has index 2. Thus conjugation determines an action of D1
on Ds. Let ¢: Dig — Aut(Dg) be the corresponding homomorphism. The kernel is
given by ker(¢) = {g € Dys | gr* = r?g, gs = sg}. Using the presentation of a dihedral
group in terms of generators and relations, Dy = (r,s | 78 = s* = 1,rs = sr71), it
is straightforward to compute that ker(¢) = {1,71}. Altogether, this gives an injection
Dyg/{r*) < Aut(Dg), which must be an isomorphism since the source has size 8 and
as shown above the target has size at most 8. It remains to note that there is an
isomorphism Dig/(r*) = Dg, as is clear from the presentation in terms of generators
and relations.

Problem 3. Let p be a prime. Compute the number of Sylow p-subgroups of GLy(F),).

Solution. By Sylow’s theorem, the number of Sylow p-subgroups is given by the index

in GLy(F,) of the normalizer N of any given Sylow p-subgroup P. The order of GLy(F),)
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is

IGLy(F,)[ = (»* = 1)(»* = p) = p(* = 1)(p — 1)
because for an element A € GLy(F,), the first column can be any nonzero element of
FIQ,, and the second column can be any element of FIQ) not in the span of the first column.
Thus a Sylow p-subgroup of GLy(F,) is a subgroup of order p. An example of such is
the subgroup P C GLo(F,) of upper triangular matrices with all diagonal entries equal
to 1.

For the above P, a direct computation shows that the normalizer N consists of all
upper triangular matrices in GLy(F,). Thus we have |N| = (p — 1)(p? — p), since the
first column of any A € N can be any nonzero element of FZQ) of the form (a,0) and the
second column can be any element of Fﬁ not in the span of the first column. Thus the
number of Sylow p-subgroups is given by

GLx(F,)| _ (* —1)(* —p) _ oy
[N (p—1)(p* —p)
Problem 4. Let F'/Q be a field extension such that F is contained in the ring M, (Q)
of n X n matrices over Q (i.e. there is an injective ring homomorphism F — M, (Q)).
Prove that the degree of the extension F'/Q satisfies [F': Q] < n.

Solution. The extension F/Q is finite since it is contained in M, (Q) and separable
since Q has characteristic 0. Hence F' = Q(«) for some element a by the primitive
element theorem. From linear algebra (the Cayley-Hamilton theorem), the image A
of @ in M, (Q) must satisfy p(A) = 0, where p(z) = det(xl — A) is the degree n
characteristic polynomial of A. Hence « also satisfies p(a) = 0 and [Q(«) : Q] < n.

Alternate solution: Note that the inclusion F' — M, (Q) makes Q" into an F-vector
space. Then the result follows by taking dimensions of vector spaces.

Problem 5. Let p be a prime, let a € F, be a nonzero element, and consider the
polynomial f(x) = 2P —x +a € F,[z]. Let L be the splitting field of f(z). Prove that
the field extension L/F, is Galois, and determine the Galois group.

You may use without proof that f(z) is an irreducible polynomial.

Solution. Note that f'(x) = —1 is relatively prime to f(x), so f(z) is separable. Thus
L is Galois. Moreover, if « is a root of f(z), then for any ¢ € F,, we have

flate)=a"+f —a—-—c+a=fla)+F —c=0,

since ¢® = c¢. Thus the set of all roots of f(x) is given by {a+ ¢ | ¢ € F,}. This means
that L = F,(«a) is obtained by adjoining the single root « to F,,. Thus L/F,, is a degree p
extension, since f(x) is an irreducible polynomial. It follows that Gal(L/F),) is a group
of order p, and hence isomorphic to Z/p.



