
Algebra II QR — January 2025

Problem 1. Let G be a finite group of order mn, where m and n are relatively prime
integers, and assume that there exists a subgroup M ⊂ G of order m and a subgroup
N ⊂ G of order n. Prove that G is isomorphic to a subgroup of the symmetric group
Sm+n on m+ n elements.

Solution. The action of G on the set G/M of left cosets defines a homomorphism
φ : G → Sn, since n = |G/M |, and the kernel satisfies ker(φ) ⊂ M . Similarly, the
action of G on G/N defines a homomorphism ψ : G→ Sm with ker(ψ) ⊂ N . Consider
the homomorphism f = (φ, ψ) : G → Sn × Sm. Its kernel ker(f) = ker(φ) ∩ ker(ψ)
is contained in M ∩ N , but this group is trivial since its order divides the relatively
prime numbers m and n. Thus f is injective. Composing with the natural injective
homomorphism Sn×Sm ↪→ Sn+m (sending (σ, τ) to the permutation of n+m elements
given by σ on the first n and τ on the last m), we obtain an injective homomorphism
G→ Sn+m.

Problem 2. Let D8 be the dihedral group of order 8, i.e. the group of symmetries of a
square. Prove that there is an isomorphism Aut(D8) ∼= D8, where Aut(D8) is the group
of automorphisms of D8.

Hint: It may be useful to consider an embedding D8 ↪→ D16.

Solution. First we claim |Aut(D8)| ≤ 8. To see this, let r and s denote the standard
“rotation” and “reflection” generators of D8. Then any f ∈ Aut(D8) is determined by
f(r) and f(s). Moreover, f(r) must have order 4, and hence is contained in {r, r3}.
Similarly, f(s) must have order 2, and hence is contained in {r4, s, sr, sr2, sr3}; but
f(s) = r4 is not possible, since otherwise f would not be surjective. This means there
are at most 2 · 4 = 8 possible elements f ∈ Aut(D8).

Now consider a square embedded in an octagon so that its four vertices are alternating
vertices of the octagon. This determines an embedding D8 ↪→ D16, which sends r 7→ r2

and s 7→ s (where we use r and s to also denote the standard generators of D16).
The image is normal, as it has index 2. Thus conjugation determines an action of D16

on D8. Let φ : D16 → Aut(D8) be the corresponding homomorphism. The kernel is
given by ker(φ) = {g ∈ D16 | gr2 = r2g, gs = sg}. Using the presentation of a dihedral
group in terms of generators and relations, D16 = 〈r, s | r8 = s2 = 1, rs = sr−1〉, it
is straightforward to compute that ker(φ) = {1, r4}. Altogether, this gives an injection
D16/〈r4〉 ↪→ Aut(D8), which must be an isomorphism since the source has size 8 and
as shown above the target has size at most 8. It remains to note that there is an
isomorphism D16/〈r4〉 ∼= D8, as is clear from the presentation in terms of generators
and relations.

Problem 3. Let p be a prime. Compute the number of Sylow p-subgroups of GL2(Fp).

Solution. By Sylow’s theorem, the number of Sylow p-subgroups is given by the index
in GL2(Fp) of the normalizer N of any given Sylow p-subgroup P . The order of GL2(Fp)
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is
|GL2(Fp)| = (p2 − 1)(p2 − p) = p(p2 − 1)(p− 1)

because for an element A ∈ GL2(Fp), the first column can be any nonzero element of
F2

p, and the second column can be any element of F2
p not in the span of the first column.

Thus a Sylow p-subgroup of GL2(Fp) is a subgroup of order p. An example of such is
the subgroup P ⊂ GL2(Fp) of upper triangular matrices with all diagonal entries equal
to 1.

For the above P , a direct computation shows that the normalizer N consists of all
upper triangular matrices in GL2(Fp). Thus we have |N | = (p − 1)(p2 − p), since the
first column of any A ∈ N can be any nonzero element of F2

p of the form (a, 0) and the

second column can be any element of F2
p not in the span of the first column. Thus the

number of Sylow p-subgroups is given by

|GL2(Fp)|
|N |

=
(p2 − 1)(p2 − p)
(p− 1)(p2 − p)

= p+ 1.

Problem 4. Let F/Q be a field extension such that F is contained in the ring Mn(Q)
of n × n matrices over Q (i.e. there is an injective ring homomorphism F → Mn(Q)).
Prove that the degree of the extension F/Q satisfies [F : Q] ≤ n.

Solution. The extension F/Q is finite since it is contained in Mn(Q) and separable
since Q has characteristic 0. Hence F = Q(α) for some element α by the primitive
element theorem. From linear algebra (the Cayley-Hamilton theorem), the image A
of α in Mn(Q) must satisfy p(A) = 0, where p(x) = det(xI − A) is the degree n
characteristic polynomial of A. Hence α also satisfies p(α) = 0 and [Q(α) : Q] ≤ n.

Alternate solution: Note that the inclusion F ↪→Mn(Q) makes Qn into an F -vector
space. Then the result follows by taking dimensions of vector spaces.

Problem 5. Let p be a prime, let a ∈ Fp be a nonzero element, and consider the
polynomial f(x) = xp − x + a ∈ Fp[x]. Let L be the splitting field of f(x). Prove that
the field extension L/Fp is Galois, and determine the Galois group.

You may use without proof that f(x) is an irreducible polynomial.

Solution. Note that f ′(x) = −1 is relatively prime to f(x), so f(x) is separable. Thus
L is Galois. Moreover, if α is a root of f(x), then for any c ∈ Fp we have

f(α + c) = αp + cp − α− c+ a = f(α) + cp − c = 0,

since cp = c. Thus the set of all roots of f(x) is given by {α + c | c ∈ Fp}. This means
that L = Fp(α) is obtained by adjoining the single root α to Fp. Thus L/Fp is a degree p
extension, since f(x) is an irreducible polynomial. It follows that Gal(L/Fp) is a group
of order p, and hence isomorphic to Z/p.


