THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Algebraic Topology

January 2025

- 1. Let X, Y be two connected based CW-complexes where $\pi_1(X)$ is a free group F(x, y)on two free generators x, y and $\pi_1(Y)$ is a free group on two free generators u, v. A based CW-complex Q is obtained from the disjoint union XIIY by identifying the base points and additionally identifying a CW-subcomplex $Z \subset X$ with a CW-subcomplex $T \subset Y$, both disjoint from the basepoint, via a homeomorphism $Z \cong T \cong S^1$. Assume that the resulting embeddings $S^1 \subset X, S^1 \subset Y$ send a given free generator of $\pi_1(S^1)$ to (a conjugate of) $x^2 \in \pi_1(X)$ and (a conjugate of) $u^2 \in \pi_1(Y)$. Compute $\pi_1(Q)$.
- 2. Let X be the covering space of $\mathbb{R}P^2 \times \mathbb{R}P^2$ corresponding to the diagonal $\mathbb{Z}/2$ subgroup of $\pi_1(\mathbb{R}P^2 \times \mathbb{R}P^2)$, identified with $\mathbb{Z}/2 \times \mathbb{Z}/2$ via the two projections

$$\mathbb{R}P^2 \times \mathbb{R}P^2 \to \mathbb{R}P^2.$$

Compute the homology of X.

3. (a) For what odd natural numbers k does there exists an n > 0 such that \mathbb{Z}/k acts freely on $\mathbb{C}P^n$? Prove your answer.

(b) For what odd natural numbers k does there exists an n > 0 such that \mathbb{Z}/k acts freely on $\mathbb{R}P^n$? Prove your answer.

4. Prove or disprove the following statement:

"Every continuous based map between based CW-complexes which induces 0 on reduced homology groups is homotopic to the constant map into the base point."

[By *homology* we mean singular homology with coefficients in \mathbb{Z} , as covered in Math 592.]

5. Give an explicit example of a non-normal subgroup of index 3 of the free group F(a, b) on two elements.