
AIM Qualifying Review Exam in Advanced Calculus & Complex Variables

January 2026

There are five (5) problems in this examination.

There should be sufficient room in this booklet for all your work. If you use other sheets of paper,
be sure to mark them clearly and staple them to the booklet. No credit will be given for answers

without supporting work and/or reasoning.

Problem 1

Identify whether each of the following statements are true or false, and provide a proof or a
counterexample as appropriate:

(a) A uniformly continuous function f : (0, 1) → R is bounded.

(b) If f : R → R maps Cauchy sequences to Cauchy sequences, then f is continuous.

(c) The pointwise limit of a sequence of uniformly continuous functions on R is uniformly contin-
uous.

(d) If f, g : R → R are uniformly continuous, then their product fg is uniformly continuous.

Solution

(a) True. Since f is uniformly continuous on (0, 1) it extends to a continuous function on [0, 1],
which is bounded by the extreme value theorem.

(b) True. Let xn → x and define a new sequence x̃n that alternates between xn and x, i.e., let
x̃n = xn/2 if n is even and x̃n = x if n is odd. Then x̃n → x and is Cauchy; hence f(x̃n) is
Cauchy and therefore converges. Since f(x̃n) = f(x) for odd n, f(x̃n) → f(x). Examining
even n we get that f(xn) → f(x).

(c) False. For a counterexample take fn : R → R to be given by fn(x) = min (x2, n) and note that
fn → x2 pointwise. The latter is not uniformly continuous.
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(d) False. For a counterexample let f(x) = g(x) = x. Both f and g are uniformly continuous, but
fg = x2 is not uniformly continuous.

Problem 2

Let

f(x) =


1 + x x > 0

0 x = 0

−1 + x x < 0

and consider the minimization problems

Problem I: min
c∈R

∫ 1

−1
|f(x)− c|2 dx and Problem II: min

c∈R

∫ 1

−1
|f(x)− c| dx.

(a) Produce an optimal c for each problem. Be sure to justify your steps, e.g., if you decide to
commute two limits as part of a calculation you must explain why that is possible. (Hint: it is
not necessary to commute limits to solve this problem; if you are stuck, try drawing a graph.)

(b) One of these problems has more than one minimizer. Identify which problem and find all of its
minimizers.

Solution
For problem one, write ∫ 1

−1
|f − c|2 =

∫ 1

−1
f2 − 2c

∫ 1

−1
f + 2c2.

The expression is quadratic in c and convex, so its unique minimizer can be found by the critical
point test. Compute

d

dc

∫ 1

−1
|f − c|2 = −2

∫ 1

−1
f + 4c.

The unique critical c is

c =
1

2

∫ 1

−1
f = 0.

This answers (a) and (b) for problem one.
For problem two, we evaluate the integral

I(c) =

∫ 1

−1
|f − c|

as a piecewise function of c. First, simplify by noting that

I(c) = I(−c)

by the odd symmetry f(x) = −f(−x) and a change of variables:∫ 1

−1
|f(x)− c| dx =

∫ 1

−1
| − f(−x)− c| dx =

∫ 1

−1
|f(x) + c| dx.
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Now consider the cases (i) c ∈ [0, 1], (ii) c ∈ (1, 2), and (iii) c ∈ [2,∞). In case (i),

I(c) =

(∫ 0

−1
+

∫ 1

0

)
|f − c| =

∫ 0

−1
c− f +

∫ 1

0
f − c

= −
∫ 0

−1
f +

∫ 1

0
f.

In case (ii),

I(c) =

(∫ c−1

−1
+

∫ 1

c−1

)
|f − c| =

∫ c−1

−1
c− f +

∫ 1

c−1
f − c

= c(c− 1 + 1)−
∫ c−1

−1
f +

∫ 1

c−1
f − c(1− (c− 1))

= 2c2 − 2c−
∫ c−1

−1
f +

∫ 1

c−1
f.

In case (iii),

I(c) =

∫ 1

−1
|f − c| =

∫ 1

−1
c− f

= 2c−
∫ 1

−1
f.

Altogether,

I(c) =


2c−

∫ 1
−1 f c ∈ [2,∞)

2c2 − 2c−
∫ c−1
−1 f +

∫ 1
c−1 f c ∈ (1, 2)

−
∫ 0
−1 f +

∫ 1
0 f c ∈ [0, 1]

.

Since I(c) = I(−c) we have the formula for I.
We are to minimize. Differentiating the formula above,

d

dc
I(c) =


2 c ∈ (2,∞)

2c− 2 c ∈ (1, 2)

0 c ∈ (0, 1)

.

Note I is strictly increasing on [1,∞), strictly decreasing on (−∞,−1], and constant on [−1, 1].
Thus I is minimized for c ∈ [−1, 1]. This answers (a) and (b) for problem two.

Problem 3

Evaluate ∫ ∞

−∞

x2

(1 + x2)(3 + x2)2
dx

Solution
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Write z = x+ iy. Introduce the contour ΓR made of the segment on the real axis from x = −R
to x = R and the semicircle from x = R to x = −R in the upper half plane. First, note that∫ ∞

−∞

x2

(1 + x2)(3 + x2)2
dx = lim

R→∞

∮
ΓR

z2

(1 + z2)(3 + z2)2
dz

since on the semicircle the integrand is ≲ R2−2−4 = R−4 and the length of the semicircle is ∼ R,
so the contribution from the semicircle to the integral is ≲ R−3 → 0 as R → ∞.

Next, use residue calculus to evaluate the integral over ΓR for large R. The integrand has poles
at ±i and ±

√
3i. The relevant poles are i and

√
3i. By the residue theorem,∮

ΓR

z2

(1 + z2)(3 + z2)2
dz = 2πi

(
Res(z = i) + Res(z =

√
3i)
)

for large R. The pole at i is simple, and its residue i/8 is found by writing

z2

(1 + z2)(3 + z2)2
=

i2

(z − i)(i+ i)(3 + i2)2
+ h.o.t. =

i

8

1

z − i
+ h.o.t.

The pole at
√
3i is a double pole, and its residue −

√
3i/12 is found by taking z =

√
3i + ζ and

collecting the 1/ζ terms:

z2

(1 + z2)(3 + z2)2

=
(
√
3i+ ζ)2

(1 + (
√
3i+ ζ)2)(3 + (

√
3i+ ζ)2)2

=
−3 + 2

√
3iζ + ζ2

(−2 + 2
√
3iζ + ζ2)(−12ζ2 + 4

√
3iζ3 + ζ4)

=
−3 + 2

√
3iζ + ζ2

24ζ2
1

(1−
√
3iζ + 1

2ζ
2)(1−

√
3i
3 ζ − 1

12ζ
2)

=

(
−1

8

1

ζ2
+

√
3i

12

1

ζ
+

1

24

)(
1 +

4
√
3i

3
ζ + h.o.t.

)

= −1

8

1

ζ2
−

√
3i

12

1

ζ
+ h.o.t.

Therefore, ∫ ∞

−∞

x2

(1 + x2)(3 + x2)2
dx = 2πi

(
i

8
−

√
3i

12

)
= π

(√
3

6
− 1

4

)
.

Problem 4

Consider the complex polynomial

p(z) = 2z4 + z3 + 8z − 4.

How many zeros counting multiplicity does p have in the annulus 1 < |z| < 2?
Solution

The answer is three. To prove it, use Rouche’s theorem twice. First, take |z| = 2 and note that

|2z4| > |z3 + 8z − 4|
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because
|z3 + 8z − 4| ≤ |z|3 + 8|z|+ 4 = 23 + 8 · 2 + 4 = 23 + 24 + 22

and
|2z4| = 25

and 25 > 22 + 23 + 24. Thus, by Rouche, p has the same number of zeros in |z| < 2 as does 2z4,
i.e., four zeros.

Next take |z| = 1 and use instead that

|8z − 4| > |2z4 + z3|

since

|8z − 4| = 8|z − 1

2
| ≥ 4

whereas
|2z4 + z3| ≤ 2|z|4 + |z|3 = 3.

Again, by Rouche, p has the same number of zeros in |z| < 1 as does 8z − 4, i.e., one. The same
conclusion holds for |z| ≤ 1, and subtracting gives the result.

Problem 5

Recall that the real and imaginary parts of a complex analytic function are harmonic. Using
this, find a harmonic function v = v(x, y) on the unit disc x2+y2 < 1 such that v = 0 for x2+y2 = 1
and x > 0, and v = 1 for x2 + y2 = 1 and x < 0. Your answer may involve the complex variable
z = x+ iy.

Solution
The Möbius transformation z 7→ 1

z−i +
1
2i takes the unit disc to the upper half plane, and sends

i 7→ ∞ and −i 7→ 0. Consequently, it takes the right half of the unit circle to the positive real axis,
and the left half of the unit circle to the negative real axis. Writing log z = log |z|+ i arg z for the
complex logarithm with branch cut on the negative imaginary axis, so that arg z ∈ (−π/2, 3π/2),
we see that

w(x, y) =
1

π
arg(x+ iy)

is harmonic and satisfies w = 0 for x > 0 and y = 0, and w = 1 for x < 0 and y = 0. Thus

v(x, y) =
1

π
arg

(
1

x+ iy − i
+

1

2i

)
is the desired function.
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