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SOLUTIONS

Solution 1. We have P (x)− 2017 = Q(x)(x− a)(x− b)(x− c)(x− d) where a, b, c, d
are distinct integers and Q is a polynomial with integer coefficients. Suppose that r is
an integer and that P (r) = 0. Then

−2017 = Q(r)(r − a)(r − b)(r − c)(r − d) .

We know that 2017 is prime. Of the four numbers r− a, r− b, r− c, r− d at most one
of them is 1, at most one of them is −1, so the other two have absolute value > 1 and
their product divides 2017, a contradiction.

Solution 2. We observe that

(1− z)
∞∑
n=1

[nβ]zn =
∞∑
n=1

[nβ]zn −
∞∑
n=1

[nβ]zn+1.

We reindex the first sum to see that the above is

=
∞∑
n=0

[(n+ 1)β]zn+1 −
∞∑
n=1

[nβ]zn+1.

In the first sum, when n = 0 the summand is 0, so the value of the sum is unchanged
when we delete that term, so the above is

=
∞∑
n=1

(
[(n+ 1)β]− [nβ]

)
zn+1.

On dividing by z we see that the right hand side of the proposed identity is

∞∑
n=1

(
[(n+ 1)β]− [nβ]

)
zn.

Now 0 < β < 1, so [(n+ 1)β]− [nβ] is 0 or 1 for all n, and it is 1 precisely when there
is an integer, say m, between nβ and (n + 1)β. Since β is irrational, this means that
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nβ < m < (n+ 1)β, which is to say n < m/β < n+ 1. We note that α = 1/β. Hence
n = [mα]. Thus the power series above is exactly

∞∑
m=1

z[mα].

Solution 3. Preliminary reasoning: If ai = a for all i, then the sum on the left is
n/(2a), and the sum on the right is n/(3a), a ratio of 3/2. However, if the ai alternate
between a small value a and an enormously larger value b, then the sum on the left is
approximately n/b, while the sum on the right is roughly n

2
(1
b
+ 1

2b
) = 4

3
· n
b
. Thus 4/3

is the best possible constant, and we believe that we have identified the worst case, at
least for even n. This motivates what follows.

For positive real numbers p and q we have

p+ q

2
≥ 2

1

p
+

1

q

.

(More generally, the harmonic mean does not exceed the arithmetic mean.) Take
p = 2a+ b and q = b+ 2c to see that

1

a+ b+ c
≤ 1

2

( 1

2a+ b
+

1

b+ 2c

)
.

Furthermore,

3

a+ b
− 2

2a+ b
− 2

a+ 2b
=

3(2a+ b)(a+ 2b)− 2(a+ b)(2a+ b)− 2(a+ b)(a+ 2b)

(a+ b)(2a+ b)(a+ 2b)

=
3abc

(a+ b)(2a+ b)(a+ 2b)
> 0 .

It is now convenient to assume that the ai are periodic with period n. Thus
n∑

i=1

1

ai + ai+1

>
2

3

( n∑
i=1

1

2ai + ai+1

+
n∑

i=1

1

ai + 2ai+1

)

=
2

3

( n∑
i=1

1

2ai + ai+1

+
n∑

i=1

1

ai+1 + 2ai+2

)

≥ 4

3

n∑
i=1

1

ai + ai+1 + ai+2

.

Solution 4. We observe that 2y3+9y2−27 = (2y−3)(y+3)2. The power of 2 dividing
this number is even, but the power of 2 in 2x2 is odd, so these numbers are not equal,
if they are nonzero. Therefore, the only solution in integers is (x, y) = (0,−3).
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Solution 5. Preliminary comment: Let A(T) denote the set of continuous functions
with period 1 whose Fourier series is absolutely convergent. Wiener’s famous theorem
assert that if f ∈ A(T), and if f(x) = 0 has no solution, then 1/f ∈ A(T). It is trivial
that if f, g ∈ A(T), then fg ∈ A(T). The same is true for trigonometric polynomials.
The question is: Does Wiener’s theorem also hold for trigonometric polynomials? The
answer is a resounding “No!”, as we see by this simple example. This makes a poor
competition problem, since it can be solved in so many ways. Some example solutions
follow. For reference, let f(x) = 1/(2− cos 2πx).

(1) For a trigonometric polynomial T in the given form, put

d(T ) = max
tn ̸=0

n − min
tn ̸=0

n .

Clearly, if T1 and T2 are trigonometric polynomials, then d(T1T2) = d(T1) + d(T2).
The function T1(x) = 2 − cos 2πx is a trigonometric polynomial with d(T1) = 2.
Suppose that f is a trigonometric polynomial, which is to say that there is a
trigonometric polynomial T2 such that T1T2 = 1. But d(1) = 0, so we have a
contradiction.

(2) Corresponding to a trigonometric polynomial in the given generic form, we may
define a rational function

Q(z) =
N∑

n=−N

tnz
n.

Thus T (x) is the restriction to the unit circle ofQ, in the sense that T (x) = Q(e(x)).
We note that Q is a rational function, but of a rather special form: its poles are
all at the origin. On the other hand, when we apply this change of variable to f ,
we find that

f(x) =
1

2− 1
2
e(x)− 1

2
e(−x)

=
1

2− 1
2
z − 1

2z

=
−2z

z2 − 4z + 1
,

which has poles at 2±
√
3, not at the origin. For full points it should be noted that

the rational function Q is the unique rational function R(z) such that R(e(x)) =
T (x), since Q and R are equal on a continuum.

Solution 6. By a crude form of Stirling’s formula we know that

(1) ln k! = k ln k − k +O(ln k) .

Put ϕ = (1 +
√
5)/2. We know that

(2) Fn =
ϕn − (−1/ϕ)n√

5
,

from which we deduce that

(3) lnFn = n lnϕ− 1

2
ln 5 +O

(
ϕ−2n

)
.
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Since lnFn = O(n), it follows by three applications of (1) that

ln

(
Fn+1

Fn

)
= lnFn+1!− lnFn!− lnFn−1!

= Fn+1 lnFn − Fn+1 − Fn lnFn + Fn − Fn−1 lnFn−1 + Fn−1 +O(n) .

By (3), this is

= Fn+1

(
(n+ 1) lnϕ− 1

2
ln 5 +O(ϕ−2n)

)
− Fn

(
n lnϕ− 1

2
ln 5 +O(ϕ−2n)

)
− Fn−1

(
(n− 1) lnϕ− 1

2
ln 5 +O(ϕ−2n)

)
+O(n)

= (Fn+1 + Fn−1) lnϕ+O(n).

Hence

ln ln

(
Fn+1

Fn

)
= ln(Fn+1 + Fn−1) +O(1) = lnFn +O(1) = n lnϕ+O(1) .

Thus the proposed limit exists, and has the value lnϕ.

Solution 7. If n = 1, this follows from the Euclidean algorithm. If n = 2, then we
apply a linear transformation, invertible over the integers, and so assume that one
point is (1, 0), and that the other is (a, b). Since a is invertible modulo b, it has finite
order. Choose m > 1 so that am ≡ 1 (mod b), say am = 1 + bh. Since sm−1b and
bm have b as their greatest common divisor, we can write b as a linear combination of
these numbers, say b = cam−1b + dbm. Then xm − h(cxm−1y + dym) has the required
property. We now induct on n. For n ≥ 3 there exists an F1 such that F1(ai, bi) = 1 for
i = 2, 3, . . . , n, and an F2 such that F2(ai, bi) = 1 for i = 1, 3, 4, 5, . . . , n. We can take
powers so that these have the same degrees. Put r = F1(a1, b1 and s = F2(a2, b2). It
suffices to find a homogeneous polynomial H(x, y) of positive degree whose values on
(r, 1), (1, 1), and (1, s) are all 1, for then H(F1, F2) has the desired property. Choose a
positive integer such that sk ≡ 1 (mod (1− s)(1− rs)), say sk = 1 + t(1− s)(1− rs).
Then yk − txk−2(x− y)(x− ry) has the required property.

Solution 8. The statement is equivalent to the assertion that if S is partitioned into at
most n subsets, then one of the subsets contains the difference of two distinct elements
in it. Assume otherwise. One of the sets has at least an−1 + 1 elements. Call one
such set A1. Subtract the least element of this set from the other members, which
produces at least an−1 differences. These must lie in the other n − 1 sets, and so one
of the other sets, call it A2, must contain at least an−2 + 1 of these differences. Iterate
this procedure: Subtract the least element from the others. The result is at least an−2

differences, and these are also differences of elements of A1. Hence these elements must
lie inthe remaining n− 2 sets. Continuing by induction we produce an ordering of the
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sets A1, A2, . . . , Ak, . . . such that Ak contains at least an−k + 1 elements each of which
is a difference of two elements in all of the sets Ai for i < k. The process shows that An

contains at least two elements whose difference is not in any of the sets, a contradiction.

Solution 9. The determinant is 0, and 2017 can be replaced by any odd positive
number, say 2h + 1. Let T = BA−1, so that B = TA. Then AB−1 = T−1 = T , so
T 2 = I. Hence all eigenvalues of T are 1 or −1. If all eigenvalues are −1, then, using the
Jordan form, T is similar to −I +N where N is upper triangular and nilpotent. Then
T 2 = I − 2N +N2 = I. Hence N = N2/2 = (N2/2)2/2 = N4/8. By induction we find
that N = N2t/22

t−1. Since N is nilpotent, we deduce that N = 0. But then B = −A,
so the identity F2h+1(A,B) = F2h+1(B,A) implies that (−1)hA2h+1 = (−1)h+1A2h+1.
This in turn implies that I = −I, a contradiction. Thus T has at least one eigenvalue
equal to 1. Hence det(I − T ) = 0. Since A−B = A− TA = (I − T )A, it follows that
det(A−B) = 0. The result is true over any field whose characteristic is not 2.

Solution 10. We may assume that P is the origin and that the edges are along rays
emanating from the origin into the first orthant. We may assume that one edge is in
the direction of the unit vector (1, 0, 0), and that another edge lies in the first quadrant
of the xy-plane and is in the direction (a, s, 0) where s2 = 1−a2. Let u be a unit vector
in the direction of the third edge. Then the dot product of u with (1, 0, 0) and with
(a, s, 0) can be assumed to be b and c, respectively. Thus u = (b, (c−ab)/s, z). Since the
sum of the squares is 1, we have b2+(c−ab)2/(1−a2)+z2 = 1. We multiply both sides
by 1 − a2 and expand (c − ab)2, to find that sz =

√
1− a2 − b2 − c2 − 2abc. If p, q, r

are the lengths of the sides, then the volume is one sixth of the absolute value of the
determinant of the matrix formed with the edges as rows. We factor p, q, r out of the
respective rows, and we obtain M/6 times the determinant of a low triangular matrix
with diagonal elements 1, s, z. The volume is therefore (M/6)

√
1− a2 − b2 − c2 − 2abc.
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