
UNIVERSITY OF MICHIGAN
UNDERGRADUATE MATH COMPETITION 28

APRIL 7, 2011

Instructions. Write on the front of your blue book your student ID number. Do
not write your name anywhere on your blue book. Each question is worth 10 points.
For full credit, you must prove that your answers are correct even when the question
doesn’t say “prove”. There are lots of problems of widely varying difficulty. It is not
expected that anyone will solve them all; look for ones that seem easy and fun. No
calculators are allowed.

Problem 1. There are some gas stations on a circular roadway. Together the stations
contain just enough gas to make it all the way around. Show that it is possible to start
at one of the stations with an empty tank (that is large enough to hold all the gas at
all these stations) and make it all the way around.

Suppose instead you have a large tank with enough gas to drive around and room
for twice as much. Pick a station, and drive around, adding the available gas at each
station. There will be a station where the gas you have is minimum. If you start there,
even with an empty tank, you can make the trip.

Problem 2. Four distinct points {P1, P2, P3, P4} in the plane have the property that
the set of six distances between the pairs of them, PiPj for i 6= j, consists of precisely
2 real numbers. One example is the set of vertices of a square. Find, up to similarity,
all configurations of four points with this property.

Suppose that 3 of the four points, say A,B,C, form an equilateral triangle. Let
x = AB = BC = AC. If D is the fourth point then either 0, 1 or 2 of the distances
AD,BD,CD are equal to x. If none of the distances AD, BD, CD are equal to x, then
AD = BD = CD and D is the center of 4ABC (case 1). If AD = x and BD = CD,
then D lies on the perpendicular bisector of B and C, with distance x to A. There are
two possibilities: Either AD lie on the same since of the line through B and C (case
2), or they lie on opposite sides (case 3). If AD = BD = x, then 4ABC and 4ABD
are two equilateral triangles were A and D lie on opposite sides of BC (case 4).

Suppose none of the 3 points form an equilateral triangle. There are two cases: either
AB = BC = CD = DA and AC = BD. This is the square (case 5). The other case
is where x = AB = BC = CD and y = BD = DA = AC where x < y. Then ABCD
is a trapezium with base AD. Then A,B,C,D lie on a circle. Choose a point E with
DE = EA = x such that A and E are of opposite sides of AD. The triangles 4ABC
and 4DEA are congruent. It follows that E also lies on the circle through ABCD.
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Since x = AB = BC = CD = DE = EA, the points A,B,C,D,E form a regular
pentagon. So A,B,C,D consist of 4 of the 5 vertices of a regular pentagon (case 6).

Problem 3. Find all solutions for x3 + y3 = 3z where x, y and z are integers.

From
(a+ b)(a2 − ab+ b2) = 3c

and a2 − ab+ b2 ≥ 0, follows that both a+ b and a2 − ab+ b2 are powers of 3. We can
write a = 3kp and b = 3kq such that 3 does not divide both p and q. It follows that
p2−pq+q2 and p+q are powers of 3. If 3 | (p+q), and 9 | p2−pq+q2 = (p+q)2−3pq,
then 9 | 3pq and 3 | pq. From 3 | p + q and 3 | pq follows that 3 | p and 3 | q.
Contradiction. So p+ q = 1, p2 − pq + q2 = 1 or p2 − pq + q2 = 3.

If p + q = 1, then p2 − pq + q2 = 3p2 − 3p + 1 ≡ 1(mod3), hence 3p2 − 3p + 1 = 1
and p = 0 or p = 1.

If p2 − pq + q2 = 1, then (q − 1
2
p)2 + 3

4
p2 = 1. Hence 3

4
p2 ≤ 1.

If p2 − pq + q2 = 3, then (q − 1
2
p)2 + 3

4
p2 = 3, so p2 ≤ 4.

In each of the cases, we have p2 ≤ 4 and similarly q2 ≤ 4. So we have p, q ∈
{−2,−1, 0, 1, 2}. We verify that the only solutions for (p, q) are

{(0, 1), (1, 0), (1, 2), (2, 1)}.
Problem 4. What is the largest number of subsets you can choose from {1, . . . , n}
with each subset having an odd number of elements and the intersection of any two
distinct subsets having an even number of elements?

The largest number possible is n. The n one element sets do work. We shall sow
there cannot be n + 1. Consider the ring F n where F = Z/2Z. Each subset of
{1, . . . , n} corresponds to an element, the sum of the corresponding standard basis
elements. The elements with an even number of 1s form a vector subspace over F .
Given n+ 1 elements they are dependent: one is a sum of others, say a = b1 + · · ·+ bn.
Then a = a · a = ab1 + . . .+ abn. Each term on the right sums to 0, while a sums to 1,
a contradiction.

Problem 5. Suppose that a1, a2, . . . is a sequence of real numbers such that
n∑
i=1

ai =
n∏
i=1

ai

for all positive integers n. For every possible value of a1, determine limn→∞ an.

Let

bn =
n∏
i=1

ai =
n∑
i=1

ai.

Then we have an+1 = bn+1 − bn = bn+1/bn for all n ≥ 1. From this follows that

bn+1 =
b2n

bn − 1
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if a1 = b1 ≤ 0 then b1 ≤ b2 ≤ b3 . . . and all bi’s are negative. So limn→∞ bn exists.
Suppose that this limit is equal to b. Then we have b = b2/(b − 1) and b = 0. From
limn→∞ bn = b = 0 follows that limn→∞ an = limn→∞(bn − bn−1) = 0.

Suppose that 0 < a1 < 1. Then a2 < 0 and limn→∞ an = 0 as in the previous case.
Suppose that a1 > 1, then we have b1 ≤ b2 ≤ · · · and limn→∞ bn =∞. We have

an = bn − bn−1 = 1 +
1

bn−1 − 1

So we get

lim
n→∞

an = lim
n→∞

1 +
1

bn−1 − 1
= 1.

Problem 6. Let r > 0 be a fixed real number. Suppose that a differentiable function
y = f(x) can be defined on the interval (0, B), B > 0, so that it is positive and satisfies
the differential equation xy′ = y+yr+1. Suppose that f(1) = a > 0. Find, as a function
of r and a, the largest possible value of B for which there is such a function.

We solve the differential equation:

− log(y−r + 1)

r
=

∫
y−r−1dy

y−r + 1
=

dy

y + yr+1
=

∫
dx

x
+ C = log(x) + C,

so x(y−r + 1)1/r is constant. For x = 1 we have y = a, so

x(y−r + 1)1/r = (a−r + 1)1/r

and
y = ((a−r + 1)x−r − 1)−1/r

So B = (a−r + 1)1/r.

Problem 7. Suppose that G is a finite group containing elements x, y, z such that
yx = x2y, zy = y2z and xz = z2x. Prove that x = y = z = 1.

We prove the statement by induction on the group order |G|. Let dx, dy, dz be the
orders of x, y and z. By cyclically permuting x, y and z, we may assume that dy ≥ dx.
The group 〈y〉 ∼= Z/dyZ generated by y acts on 〈x〉 ∼= Z/dxZ by conjugation. Define
a group homomorphism ψ : 〈y〉 → Aut(〈x〉) where Aut(〈x〉) is the automorphism
group of 〈x〉 and ψ(y) is conjugation by y. Then ψ has a nontrivial kernel, because
|Aut(〈x〉)| = φ(dx) < dx ≤ dy where φ is Euler’s phi function. So there exists a power
yr of y with yr 6= 1 such that yr commutes with x. It follows that 〈y〉 is a normal
subgroup of G. By induction, we may assume that the images of x, y, z are trivial in
the group G/〈y〉. So x, y, z all lie in 〈y〉 and x, y, z commute. From x2y = yx = xy
follows that x = 1 and similarly y = z = 1.

Problem 8. Show that there is a 4× 4 matrix M over the real numbers such that all
the entries off the diagonal are nonzero, but all of the entries on the diagonal of Mk

are zero when k ≥ 1 is an integer.
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Let A be the matrix of a 45◦ rotation. All of the entries of A and A−1 have absolute
value equal to

√
2/2. Note that A2 is the matrix of a 90◦ rotation and has diagonal

entries 0 and nonzero entries off the diagonal. Also note that A4 = −I. The matrix
whose block form is (

−A2 A
A−1 ,−A2

)
has all entries off the diagonal nonzero, all entries on the diagonal equal to 0, and its
square and, hence, all higher powers, are 0.

Problem 9. How many of the binomial coefficients
(
2011
r

)
, r = 0, 1, . . . , 2011 are even?

We have 2011 = (1111101101)2 in base 2. Computing modulo 2, we have (1 + x)2 =
1 + x2, and (1 + x)2n

= 1 + x2n
. So we have

2011∑
r=0

(
2011
r

)
xr = (1 + x)2011 =

= (1 + x)1024(1 + x)512(1 + x)256(1 + x)128(1 + x)64(1 + x)16(1 + x)8(1 + x)2(1 + x) =

= (1 + x1024)(1 + x512)(1 + x256)(1 + x128)(1 + x64)(1 + x16)(1 + x8)(1 + x2)(1 + x)

So (1 + x)2011 has 29 = 512 odd coefficients, and 2012− 512 = 1500 even coefficients.

Problem 10. One chooses 5 random points in the unit disc. Assume that we have a
uniform distribution on the disc, and that the points are chosen independently. What
is the probability that the convex hull of the 5 points is a triangle?

If V = (x, y) = (r cos(ϕ), r sin(ϕ)) is a random vector in the unit disc, then the
expected value of r2 is (using change to polar coordinates polar coordinates)

E(r2) =
1

π

∫ ∫
x2+y2≤1

x2 + y2dx dy =
1

π

∫ 1

0

∫ 2π

0

r2 · r dϕ dr = 2

∫ 1

0

r3 dr =
1

2
.

Let Vi = (ri cos(ϕi), ri sin(ϕi)) be random vectors in the unit disc for i = 1, 2, 3, 4, 5.
The area of 4V1V2V3 is

±1
2
(r1r2 cos(β3) + r2r3 cos(β1) + r3r1 cos(β2))

where β3 = ϕ2 − ϕ1,β1 = ϕ3 − ϕ2 and β2 = α1 − α3. Then r1, r2, r3, β1, β2, β3 are
independent random variables. The angles β1, β2, β3 have a uniform distribution on
[0, 2π], and

E(cos2(βi)) =
1

2π

∫ 2π

0

cos2(θ) dθ =
1

2π

∫ 2π

0

1

2
+

1

2
cos(2θ) dθ =

1

2

for all i. We have

E(r2
1r

2
2 cos2(β3)) = E(r2

1)E(r2
2)E(cos2(β3)) =

1

2
· 1

2
· 1

2
=

1

8
.
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and
E(r1r

2
2r3 cos(β1) cos(β3) = E(r1r

2
2r3 cos(β1)E(cos(β3) = 0

because E(cos(β3)) = 0. Let A be the area of 4V1V2V3. Then we have

E(A2) = E(1
4
(a2

1a
2
2 cos(β3) + a2

2a
2
3 cos2(β1) + a2

3a
2
1 cos2(β2)+

+ 2a1a
2
2a3 cos(β1) cos(β3) + 2a2a

2
3a1 cos(β2) cos(β1) + 2a3a

2
1a2 cos(β3) cos(β2))) =

1

4
(
1

8
+

1

8
+

1

8
+ 0 + 0 + 0) =

3

32
.

The probability that V4 and V5 lie in the convex hull of V1, V2, V3 is A2/π2. So for
random V1, V2, V3, this probability is

E(A2/π2) =
3

32π2
.

The probability that 2 of the vectors V1, V2, . . . , V5 lie in the convex hull of the other 3
is (

5

2

)
· 3

32π2
=

15

16π2
.


