
UNIVERSITY OF MICHIGAN
UNDERGRADUATE MATH COMPETITION 27

MARCH 28, 2010

Instructions. Write on the front of your blue book your student ID number. Do
not write your name anywhere on your blue book. Each question is worth 10 points.
For full credit, you must prove that your answers are correct even when the question
doesn’t say “prove”. There are lots of problems of widely varying difficulty. It is not
expected that anyone will solve them all; look for ones that seem easy and fun. No
calculators are allowed.

Problem 1. Suppose that n is a positive integer and that ai,j, where 1 ≤ i ≤ n,
1 ≤ j ≤ 2n + 1 are n(2n + 1) real numbers in the closed interval [0, 2]. Show that there
are distinct integers 1 ≤ j < k ≤ 2n + 1 such that

∑n
i=1(ai,j − ai,k)2 ≤ n.

Solution. Think of the hypercube [0, 2]n in n-space as the union of 2n hypercubes of
side one, each the product of unit intervals each of which is [0, 1] or [1, 2]. One has, in
effect, 2n + 1 points in the union. By the pigeonhole principle, two of them lie in the
same cube of side 1, and the squared distance between them is at most n.

Problem 2. Determine the number of integers n with 0 ≤ n < 2010 with the property
there exists a positive integer m such that n2m − 1 is divisible by 2010.

Solution. By the Chinese Remainder Theorem, one may consider the problem mod
2, 3, 5, and 67, respectively. The respective numbers of solutions are 1, 2, 4, and 2, so
there are 1 · 2 · 4 · 2 = 16 in all.

Problem 3. A sequence of real numbers is defined recursively by the rules a1 = 1 and
an+1 =

√
2010 + 37an for n ≥ 1. Determine whether lim

n→∞
an exists and, if so, find its

value.

Solution. If 1 ≤ a ≤ 67, then b =
√

(2010+37a) is such that a < b < 67: to see this,
it suffices to check a2 < b2 < 672 or that a2 < 2010 + 37a < 672. The left inequality is
equivalent to a2 − 37a − 2010 < 0 or (a − 67)(a + 30) < 0, which is clear. The right
hand inequality is equivalent to 37a < 673−2010 = 672−67 ·30 = 67(67−30) = 67 ·37
which is also clear. Hence, the sequence is increasing and bounded above by 67, and
so approaches a positive limit L ≤ 67. Since both an+1 and an approach L, we must
have that L =

√
(2010 + 37L). If we square we see that L satisfies the equation

(L− 67)(L+ 30) = 0. Hence, L = 67.
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Problem 4. There is a blackboard on which the following four triples of integers
are written: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). You are allowed to perform the follow-
ing operation as often as you choose. If the triple (a, b, c) is on the blackboard, you
may erase it and add the triples (a + 1, b, c), (a, b + 1, c), (a, b, c + 1). If at any time
the same triple appears on the board more than once, you will be fed to the Jab-
berwock. (That’s bad.) Your goal is for the blackboard not to contain any of the
triples (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). Prove that it is impossible to achieve your
goal without being fed to the Jabberwock.

Solution. For a set S of triples, define f(S) =
∑

(a,b,c)∈S 3−a−b−c. If S is the set of

triples on the blackboard, then f(S) is invariant under the operations. In the beginning,
we have f(S) = 1 + 1

3
+ 1

3
+ 1

3
= 2. Suppose that S does not contain any of the 4

triples. Then we have

4 = f(S) + 1 +
1

3
+

1

3
+

1

3
≤

∑
(a,b,c)∈N3

3−a−b−c =
( ∞∑
a=0

3−a
)3− =

(3

2

)3
=

27

8
.

Contradiction.

Problem 5. Suppose that X is a set of points in the plane such that the distance
between every two elements of X is an integer. Prove that X is finite, or all points of
X lie on a line.

Solution. Suppose that A,B,C are points of X, no two on a line. If P is a point,
not on the line through A and B, then by the triangle inequality we have

|d(P,A)− d(P,B)| ≤ d(A,B)

So there are only finitely many possible values for d(P,A) − d(P,B) and d(P,B) −
d(P,C). It suffices to show that the equations

d(P,A)− d(P,B) = a, d(P,B)− d(P,C) = b

have only finitely many solutions for fixed a and b. have only finitely many common
solutions. Let C1 be the curve defined by d(P,A) − d(P,B) = a and C2 be the curve
defined by d(P,A) − d(P,B) = b. Either, C1 is the perpendicular bisector of A and
B (a = 0), C1 is contained in the line through A and B (a = ±d(A,B)) or C1 is a
hyperbolic for which the line through A and B is the only symmetry axis.

if p 6= 0, then C1 is (a connected component) of a hyperbolic, for which the line
through A and B is the symmetry axis. If q 6= 0, then C2 is a hyperbolic with a
different symmetry axis, so C1 6= C2 and C1 and C2 intersect in finitely many points.
If p = 0 or q = 0, then C1 or C2 is a straight line, and we still have that C1 and C2

intersect in finitely many points.

Problem 6. Let n be an integer greater than 1. How many ways are there to label the
squares of an n × n chessboard with the symbols ♥,♦,♠,♣ (one symbol per square)
so that, in each of the (n− 1)2 subsquares of size 2 × 2, each symbol appears exactly
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once? (We do consider two labelings distinct, even if they differ only by rotation or
reflection; for example, when n = 2 there are 24 labelings.)

Solution. Consider a 3 × 3 subsquare. If the first row contains 3 distinct symbols,
then the other two rows are completely determined by the first row, and each column
contains exactly two distinct symbols. One of the following must be true:

(1) Every row contains only two distinct symbols, and these symbols alternate.
(2) Every column contains only two distinct symbols, and these symbols alternate.

In case (1), there are
(
4
2

)
= 6 ways to choose the two symbols for the first row. Then

all odd rows have these two symbols, and all even rows have the other two symbols.
Every row can start with each of the two symbols, so there are 2n · 6 possiblities. In
case (2), there are also 2n · 6 possibilities. If both (1) and (2) hold, then the square is
determined by the 2 × 2 in the upper left corner, so there are 24 possibilities. So the
total number is 6 · 2n + 6 · 2n − 24 = 12 · 2n − 24.

Problem 7. A person repeatedly rolls a die. Suppose that the outcomes are

a1, a2, a3, · · · ∈ {1, 2, 3, 4, 5, 6}.

For a positive integer n, let pn be the probability that one of the partial sums

a1, a1 + a2, a1 + a2 + a3, . . .

is equal to n. Determine limn→∞ pn.

Solution. We have a recurrence relation pn = 1
6
(pn−1 + pn−2 + · · · + pn−6) with the

initial conditions p0 = 1, p−1 = p−2 = · · · = p−5 = 0. We have

P (z) :=
∞∑
n=0

pnz
n =

1

1− 1
6
(z + z2 + · · ·+ z6)

.

Let α1 = 1, α2, . . . , α6 be the roots of the denominator of P (z). We have |αi| > 1 for
i ≥ 2. We can write P (z) are a sum of partial fractions:

P (z) =
6∑
i=1

βi
1− z

αi

It follows that

pn =
6∑
i=1

βi
αni

Hence limn→∞ pn = β1. To find β1, we compute

β1 = lim
z→1

(1− z)P (z) = − 1

(1− 1
6
(z + z2 + · · · z6))′

|z=1=
1

1
6
(1 + 2 + · · ·+ 6)

=
6

21
=

2

7
.
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Problem 8. Hoodwink the magician likes to shuffle a deck with an even number of
cards as follows. Place the top card on the bottom card and put these two on the
table, starting a new stack. Now place the new top card from the original stack on
top of the new bottom card from the original stack, and place these two on top of the
new stack. Continue in this way until all of the cards have been used. For example, if
the cards are originally 1,2,3,4,5,6,7,8 (top to bottom) they will wind up in the order
4,5,3,6,2,7,1,8. Suppose that one has a deck containing 2n cards, where n ≥ 2 is a
positive integer. Prove that n+ 1 Hoodwink shuffles restore the cards to their original
order.

Solution. Number the cards 2n − 1 to 0 with the largest number for the top card.
Consider the effect of the map corresponding to the shuffle on the binary representations
of these numbers. Think of the binary representation as a string of precisely n elements,
each of which is 0 or 1. If we think of these strings as elements in the vector space F n,
where F = {0, 1} is the field with two elements, one can check that the map T takes
a1, . . . an to a2, . . . , an, 0 if a1 = 0 (this doubles the number) and to 1−a2, . . . , 1−an−1, 1
if a1 = 1. Since a = −a in F , this map sends a1, . . . , an to a1 + a2, . . . , a1 + an−1, a1

in both cases. Thus T is F -linear. Let ej denote the j th standard basis vector in
F n. The orbit of en is en, en−1, · · · , e1, e1 + · · ·+ en, where the last vector maps to en.
Hence, for all of the vectors v in this orbit, T n+1(v) = v. Since the vectors in the orbit
span F n, T n+1 is the identity map.

Problem 9. Prove or disprove each of the following statements:
(a) One can fit a dodecahedron inside a cube such that each vertex of the dodecahe-
dron lies on a face of the cube.
(b) One can fit an icosahedron inside a cube such that each vertex of the icosahedron
lies on a face of the cube.

Solution. (a) The dodecahedron has 20 vertices. By the pigeonhole principle, one
face of the cube must at least contain 3 vertex. So one face A of the dodecahedron
(with 5 vertices) lies entirely in in a face F of the cube. Consider the 10 vertices
P1, . . . , P10 of the dodecahedron that do not lie in A or the face opposite of A. These
vertices do not lie in the face F of the cube or the face F ′ opposite to F . Consider the
orthogonal projection onto F . The shadow of the cube is a square, and the shadow of
the dodecahedron is a regular 10-gon, whose vertices are the projections of P1, . . . , P10.
Since the points P1, . . . , P10 do not lie in F or F ′, they lie in the other 4 faces of the
cube. And the projections of P1, . . . , P10 lie on the sides of the square. Now we have a
regular 10-gon whose vertices lie on the sides of a square. By the pigeonhole principal,
at least one side contains 3 vertices of the 10-gon. Contradiction!

(b) Consider the cube [−1, 1] × [−1, 1] × [−1, 1]. Let S be the set of 12 points
(±1,±a, 0), (0,±1,±a), (±a, 0,±1). Consider the point P = (1, a, 0), and its 5 neigh-
bors {(1,−a, 0), (0, 1,±a), (a, 0,±1)}. The neighbors have the same distance to P if
4a2 = (1− a)2 + a2 + 1. The latter equation is equivalent to a2 + a− 1 = 0. Which has
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a solution a = (−1 +
√

5)/2. For this value of a, (by symmetry) every element of S has
5 neighbors with distance 2a. The elements of S form the vertices of an icosahedron.

Problem 10. Show that

(1! · 2! · 3! · · · (p− 1)!)4 − 1

is divisible by p for every prime p.

Solution. Modulo p we have

1! · 2! · · · (p− 1)! = 1p−12p−2 · · · (p− 1)1 =

p−i∏
i=1

ip−i =

p−i∏
i=1

(p− i)i ≡
p−i∏
i=1

(−i)i.

so

(1! · 2! · · · (p− 1)!)2 ≡
p−1∏
i=1

ip−i(−i)i = ±
p−1∏
i=1

ip ≡
p−1∏
i=1

i = ±(p− 1)! ≡ ±1.

Here we used, Fermat’s theorem: ip ≡ i, and Wilson’s theorem: (p − 1)! ≡ −1. We
conclude:

(1! · 2! · · · (p− 1)!)4 ≡ 1.


