
UNIVERSITY OF MICHIGAN
UNDERGRADUATE MATH COMPETITION 23

APRIL 2, 2006

Instructions. Write on the front of your blue book your student ID number. Do
not write your name anywhere on your blue book. Each question is worth 10 points.
For full credit, you must prove that your answers are correct even when the question
doesn’t say “prove”. There are lots of problems of widely varying difficulty. It is not
expected that anyone will solve them all; look for ones that seem easy and fun. No
calculators are allowed.

Problem 1. S, T , and U are three finite non-empty mutually disjoint subsets of the
plane. Let A = S ∪ T ∪ U . No three points in A are collinear. Show that there must
exist a triangle with one vertex in each of the three sets and no point of A in its interior.

Solution. Choose P ∈ S, Q ∈ T , R ∈ U such that the area of 4PQR is minimal. If
X ∈ S and X lies inside 4PQR, then the area of 4XQR is smaller than the area of
4PQR. Contradiction, so X lies outside 4PQR. Similarly, elements from T and U
lie outside 4PQR.

Problem 2. Suppose that S is a sphere in 3-dimensional space which is tangent to
each of the 6 sides of a tetrahedron ABCD. Show that

|AB|+ |CD| = |AC|+ |BD| = |AD|+ |BC|,

where |PQ| denotes the distance between two points P, Q. (A sphere is tangent to a
line segment AB if the line through AB intersects the sphere in a unique point, and
this point lies on the line segment AB.)

Solution. Let P be a point on AB, AC or AD which lies on the sphere. Set a = |AP |.
Then a2 + r2 = |AQ|2 where Q is the center and r the radius of the sphere. So a does
not depend on whether P lies on AB, on AC or on AD. Similarly let b be the distance
of B to the tangent points on AB, BC, BD, c the distance of C to the tangent points
on AC, BC, CD and d be the distance of D to the tangent points on AD, BD, CD. If
P is a tangent point on AB, then |AB| = |AP |+ |PB| = a + b. So we have

|AB|+|CD| = (a+b)+(c+d) = (a+c)+(b+d) = |AC|+|BD| = (a+d)+(b+c) = |AD|+|BC|.

Problem 3. The sequence {an}n is defined recursively such that a1 = 1 and an+1 =
(n + 1)an , n ≥ 1. For example, a2 = 21 = 2, a3 = 32 = 9, and a4 = 49. Find the last
two digits of a2006.

1



2 (UM)2C23

Solution. The term a2005 is a power of 2005 and so has the form 5k for some positive
integer k. Modulo 100, a2006 = 20065k ≡ 65k ≡ (65)k ≡ 76k ≡ 76, since 762 − 76 =
76 · 75 = 19 · 4 · 25 · 3 ≡ 0. The required digits are 7, 6.

Problem 4. One morning, tiny bits of cheese start falling from the sky over a broad
area including the home of Mervyn the mouse, who just loves cheese storms. The rate
of fall is constant for several hours. At 11 a.m., Mervyn starts eating his way in a
straight line towards the home of his friend Millie. His rate of progress is inversely
proportional to the height of the accumulated cheese, and hence to the amount of time
since the cheese storm started. He covers six yards by noon, and three more yards by
1 p.m., when he arrives at Millie’s. At what time did the cheese fall start?

Solution. Say the fall starts a hours before 11 a.m. Let y = y(t) be the distance
covered by time t, where t = 0 corresponds to 11 a.m. Then dy/dt = c/(t+a) for some
constant c, and so y = c ln(t+a)+b. The values of y at times 0, 1, and 2 are 0, 6, and 9,
respectively. From the first, b = −c ln(a), and y = c ln(t+a)−c ln(a) = c ln((t+a)/a).
Then 6 = c ln((a + 1)/a), and 9 = c ln((a + 2)/a). Dividing the second equation by
the first gives 3/2 = ln((2 + a)/a)/ ln((a + 1)/a) or ln(((a + 1)/a)3) = ln(((a + 2)/a)2).
Thus, (a + 1)3/a3 = (a + 2)2/a2, and multiplying by a3 gives (a + 1)3 = a(a + 2)2 or
a3 + 3a2 + 3a + 1 = a3 + 4a2 + 4a or a2 + a − 1 = 0, and so a = (−1 +

√
5)/2 hours.

(This gives approximately 10:23 a.m.)

Problem 5. Evaluate
∞∑
i=0

∞∑
j=0

(−1)i+j(i− j)

(i− j)2 − 1
4

and
∞∑

j=0

∞∑
i=0

(−1)i+j(i− j)

(i− j)2 − 1
4

.

Solution. By interchanging i and j in one of the sums, it is clear that the second
sum is the negative of the first. So it suffices to compute the first sum.

∞∑
j=0

(−1)i+j(i− j)

(i− j)2 − 1
4

= 1
2

∞∑
j=0

(−1)i+j

(
1

i− j + 1
2

+
1

i− j − 1
2

)
=

= 1
2
(−1)i

(( 1

i + 1
2

+
1

i− 1
2

)
−

( 1

i− 1
2

+
1

i− 3
2

)
+

( 1

i− 3
2

+
1

i− 5
2

)
− · · ·

)
This is clearly a converging telescope sum whose value is

1
2
(−1)i 1

i + 1
2

=
(−1)i

2i + 1
.

Therefore
∞∑
i=0

∞∑
j=0

(−1)i+j(i− j)

(i− j)2 − 1
4

=
∞∑
i=0

(−1)i

2i + 1
= 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
.
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Problem 6. Let p(z) be a polynomial, and put

q(z) = p(z + i)− p(z − i).

Show that if all zeros of p(z) are real, then all zeros of q(z) are real.

Solution. Write p(z) = α
∏n

i=1(z−βi) with α ∈ C and β1, . . . , βn ∈ R. Suppose that
p(z + i) = p(z − i). If Im z > 0 then q(z) 6= 0 and p(z − i) 6= 0. We have

1 =
p(z + i)

p(z − i)
=

∏∣∣∣∣z − βi + i

z − β − i

∣∣∣∣ > 1

because ∣∣∣∣z − β + i

z − β − i

∣∣∣∣ > 1

for all i. Contradiction. Similarly Im z < 0 leads to a contradiction as well.

Problem 7. A walk starts at the origin O. The n-th leg of the walk is a straight
line of length 1/2n miles, for n ≥ 1. For each new leg an angle is selected at random
(for intervals of equal length in [0, 2π] it is as likely to be in one as in the other), and
the direction of the new leg makes that angle with the positive x-axis. Let Pn be the
position after the n-th leg, and let P be the limit of Pn as n →∞. Find the expected
value of D2, where D is the distance from P to O.

Solution. Suppose the n th angle is θn. The coordinates of P may be thought of
as

∑∞
n=1 1/2n(cos θn, sin θn) and so D2 = (

∑∞
n=1 2−n cos θn)2 + (

∑∞
n=1 2−n sin θn)2. The

squares that occurs can be written as
∑∞

n=1(1/2
2n)(cos θ2

n + sin θ2
n) =

∑∞
n=1(1/4

n) =
(1/4)/(3/4) = 1/3. The other terms, each of which is a constant multiple of cos θm cos θn

or sin θm sin θn, all have expected value 0. (All sums converge absolutely by comparison
with the terms of 2(

∑∞
n=1 1/2n)2.) The expected value of D2 is 1/3.

Problem 8. Let S be a set of 2n + 1 nonzero points in Rm. Show that it is possible
to choose a subset A consisting of n + 1 of the elements of S, say A = {a1, . . . , an+1},
in such a way that if εi = 0 or 1, then

∑n+1
i=1 εiai = 0 only when εi = 0 for all i.

Solution. Choose a vector v ∈ Rm such that 〈v, ai〉 6= 0 for all i. Let

A1 = {a ∈ S | 〈v, a〉 > 0}
and

A2 = {a ∈ S | 〈v, a〉 < 0}.
ThenA1∪A2 = S, so one of the setsA1,A2 contains at least n+1 elements. By possibly
replacing v by −v, we may assume that A1 has at least n+1 elements. Choose a subset
A = {a1, . . . , an+1} ⊆ A1 of exactly n + 1 elements. If

∑
i εiai = 0 with εi ∈ {0, 1} for

all i, then

0 = 〈
∑

i

εiai, v〉 =
∑

i

εi〈ai, v〉

Since 〈ai, v〉 > 0 for all i, this implies that ε1 = · · · = εn+1 = 0.
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Problem 9. A continuous function f : [0, 1) → [0,∞) satisfies

f(1
2
x + 1

2
) = f(x) + 1

and

f(1− x) =
1

f(x)

for x ∈ (0, 1). Evaluate ∫ 1

0

f(x) dx.

Solution.

f(1
2
− 1

2
x) = f(1− (1

2
+ 1

2
x)) =

1

f(1
2

+ 1
2
x)

=
1

1 + f(x)

f(1
2
x) = f(1

2
− 1

2
(1− x)) =

1

1 + f(1− x)
=

1

1 +
1

f(x)

=
f(x)

1 + f(x)
= 1− f(1

2
− 1

2
x).

So
f(x) + f(1

2
− x) = 1

and

1
4

=

∫ 1
4

0

f(x) + f(1
2
− x) dx =

∫ 1
4

0

f(x) dy +

∫ 1
2

1
4

f(x) dx =

∫ 1
2

0

f(x) dx

Define

dn :=

∫ 1−( 1
2
)n+1

1−( 1
2
)n

f(x) dx.

Then we have ∫ 1

0

f(x) dx =
∞∑

n=0

dn.

In fact, since f(x) is nonnegative, and d0, d1, . . . is a nonnegative sequence, the left-
hand side converges if and only if the right-hand side converges.

We have d0 = 1
4

and for n > 0, we have

dn =

∫ 1−( 1
2
)n+1

1−( 1
2
)n

f(x) dx = 1
2

∫ 1−( 1
2
)n

1−( 1
2
)n−1

f(1
2
y + 1

2
) dy = 1

2

∫ 1−( 1
2
)n

1−( 1
2
)n−1

(f(y)+1) dy = (1
2
)n+1+1

2
dn−1.

We compute d0, d1, d2, d3, . . . :
1

4
,
3

8
,

5

16
,

7

32
, . . .

So we guess dn = 2n+1
2n+2 and this can easily be proven by induction. We obtain∫ 1

0

f(x) dx =
∞∑

n=0

dn =
∞∑

n=0

2n + 1

2n+2
=

1

2

∞∑
n=0

n + 1

2n
− 1

4

∞∑
n=0

1

2n
=

1

2
· 4− 1

4
· 2 =

3

2
.
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Here we used the well-known formulas

1 + x + x2 + x3 + · · · = 1

1− x

and

1 + 2x + 3x2 + 4x3 + · · · = 1

(1− x)2

for x = 1
2
.

Problem 10. Suppose that pn − 1 divides

a1p
k1 + a2p

k2 + · · ·+ arp
kr

where p is a prime, n, k1, k2, . . . , kr are nonnegative integers and a1, a2, . . . , ar are inte-
gers satisfying

r∏
i=1

(|ai|+ 1) < pn.

Prove that there exist nonnegative integers l1, l2, . . . , lr such that

a1p
l1 + a2p

l2 + · · ·+ arp
lr = 0.

Without loss of generality we may assume that 0 ≤ k1 ≤ k2 ≤ · · · ≤ kr < n (we
can permute the ki’s and subtract multiples of n from k1, . . . , kr without changing the
divisibility condition).

The integer

a1 + a2p
k2−k1 + · · ·+ arp

kr−k1

is divisible by pn − 1 because pn − 1 and p are relatively prime.
Suppose that

(1) bs :=
r∏

i=s

(|ai|+ 1) ≤ pn+k1−ks .

for s = 2, . . . , n and that

(2) b1 :=
r∏

i=1

(|ai|+ 1) ≤ pn − 1.

Then we have

(3) b1 ≥ b2 ≥ · · · ≥ br ≥ 1

We have

|a1 + a2p
k2−k1 + · · ·+ arp

kr−k1| ≤ f(b1, b2, . . . , br)

where

f(b1, b2, . . . , br) =
(b1

b2

−1
)

+
(b2

b3

−1
)
pk2−k1 + · · ·+

(br−1

br

−1
)
pkr−1−k1 +(br−1)pkr−k1 .
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The function x 7→ ax + b/x with a, b > 0 is concave up for x > 0. This means that on
every interval [c, d] with c, d > 0 the maximum is attained at one of the endpoints of
the interval [c, d]. Let us view f as a function of real variables b1, b2, . . . , br with the
restraints (1), (2) and (3). If f is maximal, then b1 = pn − 1, and for all i, bi = bi+1,
bi = bi−1 or bi = pn+k1−ki . If bi = pn+k1−ki for all i ≥ 2, then the value of f is pn − 2.
If bi = bi+1 for some i then ai = 0 and we can use induction w.r.t. r to see that the
value of f in that case is also pn − 2. So

|a1 + a2p
k2−k1 + · · ·+ arp

kr−k1| < pn − 1

and we are done (take l1 = 0, l2 = k2 − k1, . . . , lr = kr − k1). If the theorem is wrong,
then bs > pn+k1−ks for some s.

Define aj for j > r inductively by aj = aj−r. Define kj inductively for j > r by
kj = kj−r + n. We have k1 ≤ k2 ≤ k3 ≤ · · · . For every i we have that pn − 1 divides

ai+1p
ki+1 + · · ·+ ai+rp

ki+r

There exists an s such that
r∏

i=s

(|ai|+ 1) > pn+ki+1−ks+i = pkr+i+1−ks+i .

In other words, for every m there exists an m′ such that
m∏

i=m′+1

(|ai|+ 1) > pkm+1−km′+1

with m− r < m′ < m.
Let m0 be a very large postive integer (at least r2). Define m1, m2, . . . by mi − r <

mi+1 < mi and
mi∏

j=mi+1+1

(|ai|+ 1) > pkmi+1+1−kmi+1

There exist a and b such that ma −mb is divisible by r, say ma −mb = rl. Then we
have ( r∏

j=1

(|ai|+ 1)
)l

=
b−1∏
i=a

mi∏
j=mi+1+1

(|ai|+ 1) > pkma+1−kmb+1 = pnl = (pn)l.

So
r∏

j=1

(|ai|+ 1) ≥ pn

Contradiction.


