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Problem 1. Show that n! 4 2004 is not a perfect square for any positive integer n.

Solution: The number 2004 is divisible by 3 but not by 9. For n > 6, n! is divisible
by 9, so n! + 2004 is divisible by 3 but not by 9. It follows that n! + 2004 cannot be a
square for n > 6. One easily checks that n! + 2004 is not a square for n =1,2,3,4,5
either. (1! 4+ 2004 = 2005, 2! + 2004 = 2006, 3! + 2004 = 2010, 4! + 2004 = 2028,
5!+ 2004 = 2124 and 442 = 1936, 452 = 2025, 462 = 2116 , 472 = 2209)

Problem 2. Twenty-four delegates sit around a round table. Two delegates can speak
to each other if at most 4 people sit between them. After a break each person sits down
again, not necessarily in the same seat as before. Show that there exist two delegates
who are able to speak to each other before and after the break.

Solutions: In fact, there are two delegates such there are at most 3 people between
them, before and after the break. Consider 5 delegates who sit next to each other before
the break. Each pair of these 5 can talk to each other. If there are at least 4 delegates
between each two of them after the break, then there will be at least 5-4 +5 = 25
delegates. Contradiction. One can find 2 of these 5 delegates with at most 3 people in
between them after the break.

Problem 3. For positive integers n, let S(n) = |y/n] denote the integer part of the
positive square root of n. Call a non-empty set of positive integers X rooted if whenever
n,m € X, then S(n) + S(m) € X (including the case when n = m). Find, with proof,
all rooted sets of positive integers that do not contain 4.

Solution: A rooted set that does not contain 4 cannot contain an integer n > 4,
for if n were a smallest such integer, we have S(n) > 2 and so S(n) + S(n) > 4, but
25(n) < y/ny/n = n since 2 < y/n and S(n) < y/n. Thus X C {1,2,}. But S(n) =1
forn € {1,2,3}, and so S(n)+S(m) =2 foralln,m € X. Thus X C {1, 2, 3} is rooted
if and only if 2 € X and the four possibilities are {2}, {1, 2}, {2,3} and {1, 2, 3}.

Problem 4. A tetrahedron has as base equilateral triangle ABC' and a fourth vertex
V not in the plane of AABC such that |VA| =|VB| =|VC|. Thus, AVAB, AVBC
and AVCA are congruent isosceles triangles. Let « be the angle at vertex V in each
of these triangles, and let 8 be the interior angle of the tetrahedron between the planes

of any two of these triangles. Express y = cos(f) in terms of z = cos(«).
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Solution: Define the unit vectors u = AV /|AV|, v = BV /|BV| and w = CV /|CV/|.
Then v-v = v-w = w-u = x = cos(a). Now u — zv is a vector in AVAB
perpendicular to BV and w — xv is a vector in triangle V BC' perpendicular to BV.
We have |[u—zv|?> = (u—zv)-(u—2v) = v-u—2z(u-v)+z%(v-v) = 1-222 +2? = 1—22,

so |w — zv| = |u — zv| = V1 — z2. We have

(=) (w—av) w-w—z(u-v)—z- w)+2*(v-v)

lu— av||lw —zv] 1— 22

x—2?—2?+22 x—a? x

1 — 22 T 1—22 142z

Problem 5. Let a be a fixed real number strictly between —2 and 2 and let A,, be the
n X n matrix which has a along the diagonal, 1’s along the super- and sub-diagonals
and 0’s everywhere else. For example, we have

a 1 0 O

a 1 a 10 1 a10
AQ:(l a>’ As = (1)3‘1 A= 10 1 6 1
a 001 a

Prove that det(A,) is negative for infinitely many n.

Solution: Expanding the determinant along the first column of the matrix yields the
recurrence relation det(A, 1) = adet(A,) —det(A,_1). We define z,, = det(4,). Then
we have xg = 1, 1 = a¢ and z,41 = ax, —2,_1 for n > 1. We apply standard techniques
for solving recurrence relations. The characteristic equation of the recurrence relation
is

M —al+1=0.
The two solutions of this equation are
a+iv4 — a? a—ivV4 —ai
= —2 and )\2 = —2 -

The general solution for the recurrence relation is

M

— n n
Ty = cl/\l + 02/\2
for some complex numbers ¢y, co. The initial conditions give us
1= c1+ ¢ and a = 01)\1 + CQ/\Q.

We solve for ¢; and ¢, and obtain
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Note that Ay is the complex conjugate of A\; and ¢y is the complex conjugate of c;.
Also, \; is not real and has absolute value 1. It follows that

1
Tn =5 Re(c1AT)

where Re(z) denotes the real part of a complex number 2. We can write ¢; = Ce”” and
A =€ where C' #0 and 0 < o < 7, s0

1 )
Tp = 50 Re(e!079),

Suppose we are given a positive integer n. We can write y+na = 2wk+ [ where —%7? <
B < %7‘(‘. There exists a nonnegative integer m > n such that %w < v+ma—2rk < %71’.
It follows that x,, is negative. We have proven that there are infinitely many positive
integers m for which z,, is negative.

Problem 6. Show that for every positive integer k there is an integer n, whose decimal
expansion uses only the digits 1 and 2, such that 2* divides n;. For example 2 | 2,
4112 and 8 | 112.

Solution: We prove by induction on k that there exists an integer n; with exactly k
digits wich are all either 1 or 2, such that 2¥ divides nj. The cases k = 1,2, 3 already
have been done. Suppose that n; is a k-digit number consisting of 1’s and 2’s and
2% divides my. If 2¥*1 divides ny then 2**! divides nj,1 := 2 - 10*¥ + ny (which is the
decimal number n; preceded by a 2). If 257! does not divide ny then 5% + ny /2% is
even, so 28*1 divides ngy1 := 2%(5% 4+ ny /2%) = 10* + ny, (which is ny preceded by a 1).

Problem 7. Show that for any polynomial p(z) € R[z] there is a nonzero polynomial
q(z) € Rlz] such that p(z)q(z) = >, ck2* has the property that if ¢ is nonzero then
k is prime. For example, if we are given p(z) = 1+ 2z + 322, then we can take
q(z) = 222 — 323, for then p(2)q(z) = 222 + 2* — 92° has the required form.

Proof: The quotient ring R[z]/(p(z)) is a d-dimensional vector space where d is the
degree of p(z). If rg, 71, . .., 74 are d+1 distinct primes then the images of 2™, 2™ ... 2™
in R[z]/(p(z)) will be dependent over R. This means that there exist real numbers
@, a1, - .., aq € R for which apz" +a;2™ +- - -+ a)? is divisible by the polynomial p(z).

Problem 8. Given a natural number n let S, denote the set of all integers m such
that {n/m} > 1/2, where {z} = z — |z| denotes the “fractional part” of z. Prove that

> ¢(m) =n?,
meESy

where ¢(m) is Euler’s ¢-function (that is, the number of integers k£ in {1,2,...,m}
that are coprime to m). For example S¢ = {4,7,8,9,10,11,12}, and we see that
A(4)+ d(7) + d(8) + (9) + ¢(10) + ¢(11) + $(12) =2+ 6+4+6+4+10+4 = 36 = 6%
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Solution: Let |z| denote the integer part of the positive real number z. Note that
|2x] —2|z] =1if {z} > 1/2 and is 0 otherwise. Thus

» 3 ot = S| 2] 2| ).
Now observe that
SN ot =Y 6@ Y 1=Ys@]L],
n<k djn d n<k,dn d

and as }_,, #(d) = n we see that the left-hand side also equals

k(k+1)
Son= XD

n<k

Using this in (1) we get that

- =n.

Z b(m) = 2n(27;+ 1) 2n(n;— 1) 5

meSy

Problem 9. Suppose that you are playing the following game. First a random number
xo is chosen from the interval [0, 1] (with a uniform distribution). In round 1, a second
number z; will be chosen randomly from the interval [0, 1] — but before this, you have
to guess if this number is going to be higher or lower than the previous number x,. If
you were wrong, then the game is over. Otherwise you will proceed to round 2. The
other rounds proceed similarly: In round £ you first guess “higher” or “lower”. Then a
random number zy, is chosen from the interval [0, 1]. If you said “higher” and zy > xx_1
or you said “lower” and zj < xp_; then you proceed to round k£ + 1. Otherwise the
game will end in round k. Assume that you are using a strategy that in each round
maximalizes the probability to proceed to the next round.

(a) What is the probability that the game will last 3 or more rounds? In other
words, what is the probability that the first two guesses will be right?
(b) What is the expected number of rounds that will be played?

Solution: The best strategy of course is the say “higher” in round % if z;_; < % and
“lower” in round k if 21 > 1. If 0 < y < 1, let fi(y) be the probability that the
game lasts at least k£ + 1 rounds, given that z;, = y. By symmetry fx(1 — y) is the
probability that the game last at least k£ + 1 rounds if x;, = y and % <y <1 Also
note that fi(3) is the probabilty that the game lasts at least & rounds (if a game lasts
k rounds and z, = %, then the k-th guess will be right with probability 1). We try
to find a recursive formula for fy.1(y). Suppose that z4,1 = y with 0 < y < % and
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xr = 2. The game lasts at least k£ + 2 rounds if it lasts at least £+ 1 rounds and either
z< fand z < yorz> i It follows that

fk+1(y):fosz<y)dy+Llfk<1—y)dy=/02fk<y>dy+/Oéfk(wdy

Also note that fo(y) = 1. We compute fi(y) = y+ 3, fo(y) = 39> + sy + 2 and
fs(y) = 5y° + 1¥® + 3y + 2. The probability that the game lasts at least 3 rounds is
fg(%) = %. This solves (a).

We create a generating function

F(z,y) =) fu(y)z*
k=0
We see that OF (2.9)
F(z,y

because fr(y) = fe_1(y) for all k& > 1 and fo(y)’ = 0. Solution to this differential
equation are of the form

F(z,y) = A(x)e™.
for some function A(z). Note that fx(3) = 2f,(0) for &k > 1 and f,(3) = 2/f4(0) — 1 for

k = 0. It follows that )

F(z, 5) =2F(z,0) — 1.
So we have
A(z)e2® =2A(z) — 1
We solve .
Az) = :
(@) 2 —e2®
The expected number of rounds is
- 27 2\/e — 2
robability of > k rounds = H=FzH-1= ¢ —1= .
kz:;p y = kz:;fk(g) ( 2) 2—€%$ 2_\/5
This solves (b).
Problem 10. Suppose that z1,zs, ..., %y, Y1, Yo, ..., Y, are real numbers such that

Y12y =22y, >0
and
T1Tg - Tp > Y1Yo - Yp, Tfork=1,2,... n.
Prove that
Ti+ Tyt Tn 2 Y1t Yot T+ Yn
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Solution: We prove the statement by induction on n, the case n = 1 being trivial.
Choose some constant C' > y; + Y2 + - - - 4+ y, and define the compact set
S ={(z1,22,...,2n) ER" | ;122 ), > y1y2 - - - yi, for all k, and s < C},

where s = z1 + x9 + - - - + x,, is the sum function. Let (zy,zs,...,2,) € S be a point
where s is minimal. This point must lie on the boundary of S. There are three cases:
case 1: s=x1 +x9+ -+ x, = C, but this is absurd. If we take x; = y; for all ¢
we would get a smaller value for s.
case 2: I1%y---Tr = Y1Ys - - - Yg for some k < n. By induction we already have

(2) Tyttt T 2yttt Yk
Also note that
Thp1Tht2 " Thil = YoriYre2  Yet, forl=1,2,....n—k.
Again by induction we have that
Tgy1 + T2+ + T 2 Ypt1 + Ykr2 + -+ Un
Combined with (2) this gives
s=x1+To+F T 2 Y1+ Y2+ Yn

case 3: T1To Ty = Y1Yo- - Yp and 129 - -Tp > Y1Y2 - - - Yg for k < n. The theory
of Lagrange multiplyiers tells us that

Vs=(1,1,...,1)

and

b P b
Vp:(_a_a"'a_)
1 To Tn
are linearly dependent, where p = z125 - - - x,,. It follows that ;1 = 2o =--- = x,, and
o s e .’.E./I/‘ ---x
TIZ2N2Y2 > 2 Yp = Y1d21 " n > 12 =g, = 1.
Y1Y2 - * *Yn—1 T1T2 " Tp—1
So we have
L1 =Tg="""=Tpn=Y1 =Yoo= """ =1Yp
and

S=r1+ T+ F T, 2y + Y2+ + Ype



