UNIVERSITY OF MICHIGAN
UNDERGRADUATE MATH COMPETITION 20
SOLUTIONS

HARM DERKSEN

Problem 1. Let A, B, C, D be the vertices of a square, in clockwise order. Let P be
a point inside the square such that the distance from P to A is 7, the distance from P
to B is 9, the distance from P to C'is 6. What is the distance from P to D?

Solution: Let s,t,u,v be the distances from P to AB, BC', CD and DA respectively.
We have

49+ 36 = |PA?+ |PC> = (v’ + 8%) + (> +v°) =
= (s* +1*) + (v* +v*) = |PB*+ |PD|* = 81 + |PD|*.
It follows that |[PD|?> = 49+ 36 — 81 =4 and |PD| = /4 = 2.
Problem 2. Define

an:\/12+\/22+\/32+"'+\/n2.

Is the sequence a1, as, asz,... bounded?
Solution: Define

bm,n=\/m2+¢<m+1>2+---+m.

By (decreasing) induction on m we prove that by, < m+1if 1 <m < n. The case

m = n is clear because b,, = vVn? =n <n+ 1. Let us assume that m < n and that
bmt1n < m+ 2. Then we get

b = /12 +bng1 < V/m? + (m+2) <Vm? +2m+1=m+1.

This proves that b,,, <m+1 for all m,n and in particular a, = b1, <1+1 =2 for
all n.

Problem 3. You are playing a game. Your opponent chooses a polynomial P with
non-negative integer coefficients: you don’t know what it is. You are allowed to choose
an integer a and ask for the value of P(a). You may then choose an integer b and ask
for the value of P(b). After that, to win, you must determine what the polynomial is.

Is there a foolproof strategy for winning this game?
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Solution:* Choose a = 1: then P(a) is an upper bound for the coefficients. Choose
b > P(a), say b = P(a) + 1. The value of P(b), written as an integer in base b, gives
the sequence of coefficients of the polynomial.

Problem 4. A large collection of coins of varying weights is partitioned into n mutually
disjoint subsets whose weights are w; < wy < --- < w,. The same coins are then
partitioned into n mutually disjoint subsets in another way so that their weights are
Wy > Wy > ... > W,. Show that for every k, 1 < k < n,

Wi+ oo + Wi >w + -+ +wy.
Solution: If W;, > w,, then we have
Wi+ Wyt + Wy > kW > kwy > wi +wa + -+ - + wy.
If W, < w;, then we have
Wit +Wigo+ -+ W, < (n— kE)Wi, < (n — k)wy, < Wgp1 + Waa + -+ -+ Wy
If we subtract this equation from
Wi+Wot-o o+ Wy =wi +wy + -+ -+ wy

we get
Wi+Wo+ oo+ Wi >wi +wa + -+ - + wy.

Problem 5. Given 4 points in Euclidean 3-space, not all lying in the same plane, how
many planes are there such that the distance from the plane to each of the four points
is the same?

Solution: Call the points A, B, C, D. Either (i) all four points are on one side of the
plane, (ii) there is one point on one side of the plane and there are three points on the
other side of the plane or (iii) there are two points on each side of the plane.

(i) If the four points lie on the same side of the plane and they have the same distance
to the plane then the four points lie in a plane. Constradiction.

(ii) There are 4 ways of partitioning the four points into a group of three points and
a single point. For each such partition there is exactly one plane with equal distance to
the 4 points. For example, there is exactly one plane such that A is one one side, and
B,C and D are on the other side. To see this, note that each such plane would have
to go through the middle of AB and it would have to be parallel to the vectors BC
and BD. On the other hand, since the vectors BC and BD are linearly independent
(because B,C, D are not on one line), there is exactly one plane going through the
middle of AB which is parallel to BC and BD.

(iii) There are 3 ways of partitioning the four points into two groups of two points.
For each such partition there is exactly one plane with equal distance to the 4 points.
For example, there is exactly one plane such that A and B are on one side of the plane
and C' and D are on the other side. To see this, note that each such plane would

1This is Mel Hochster’s solution.
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have to go through the middle of AC' and it would have to be parallel to AB and CD.
On the other hand, since the vectors AB and CD are linearly independent (otherwise
A, B,C, D would lie in a plane) there is exactly one plane through the middle of CD,
parallel to AB and CD.

The total number of planes with equal distance is 4 + 3 = 7.

Problem 6. Let p(z) be a polynomial with complex coefficients satisfying
p(5) - 3| <1

for j =0,1,2,...,n. Show that p(z) has degree at least n.

Solution: We prove the statement by induction on n. Suppose n = 0. Then

p(0) - 3°| < 1

which implies that p is a nonzero polynomial of degree > 0.
Suppose n > 0. Consider the polynomial ¢(z) = (p(z + 1) — p(z))/2. of degree at
most deg(p(z)) — 1. Consider

la(7) = 3] = 340 + 1) — 39(4) — 337+ + 337 =
= [3aG+1) = 3%) = Ha() - 3)| < Ha( +1) = 3%+ Ha() - ¥| < L+ £ =1
for j =0,1,2,...,n— 1. By the induction hypothesis we have that deg(q(z)) > n —1,
so deg(p(z)) > deg(q(2)) +1 > n.
Problem 7. At time ¢ = 0, n particles are at given positions on the unit circle (we
will think of a particle as a point). Each particle moves at constant speed 1 over the
unit circle, either in clockwise or in counterclockwise direction. If two particles meet,

they will bounce in opposite direction again with speed 1. Show that after some time
all particles will be in their original position again.
Solution: Let P;(t) be the position of particle i at time ¢. Suppose that we change the
rules and that particles will not bounce when they meet but just move through each
other. Let );() be the position of particle 7 at time ¢ with these new rules (we assume
the same initial positions and velocities). Note that

{P1(t), Po(1), -, Pa(t)} = { @1 (1), Q2(t), - -, @n(1)}

for all £. The functions @1, Qo, . . ., @, are clearly periodic with period 27. We see that
at time ¢t = 27 we get

{P,(27),...,P,(2m)} = {Q:1(27),...,Q.(2m)} =

= {Q1(0),...,Qn(0)} = {P1(0),..., Fu(0)},

So P;(2m) = Py (0) for ¢ = 1,2,...,n for some permutation o. (Note also that
particle P; will have the same speed at ¢t = 27 as the speed of P,(; at ¢t = 0.) Since
the permutation o has finite order, say N, we see that all the particles will be in their
original position (and with their original speed) at time ¢ = 27N.
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Problem 8. Suppose that f : R — R is a function such that for every y € R, the
equation f(r) = y has exactly 2 distinct solutions for z. Show that f cannot be
continuous.

Solution: Let us assume that f(z) is continuous. The equation f(z) = 0 has two
solutions, say z = a and x = b. Now either f(z) > 0 on [a,b] or f(z) < 0 on [a, b].
Let us assume that f(x) > 0 on [a, b]. Since f is continuous, f will have a maximum
on the interval [a,b], say at © = c. the equation f(z) = f(c) + 1 has two solutions.
Suppose x = d is one of them. We have either d < a or d > b. If d < a then

f(z) = 1 f(c) has solutions on each interval (d,a), (a,c) and (c,b) by the intermediate

value theorem. Contradiction! If d > b then f(z) = 1f(c) has solutions on each
interval (a, ¢), (¢, b) and (b, d). Contradiction.
In the second case we have f(z) < 0 on [a,b] .Now g(z) = —f(x) is continuous,

g(a) = g(b) =0 and g(x) > 0 on [a,b]. A contradiction follows from the first case.
Problem 9. Let o = 0.99. Find €y, €1,...,€67 € {—1,1} such that

€0+ €10+ €30% + -+ + €7a”| < 0.000008 = 8 - 107°.

Solution: Using the Bernoulli inequality (1 — 8)® > 1 —ng for 5 = 0.01 and n = 2,4
we see that

0.000008 = 0.01-0.02-0.04 < |(1 — a)(1 — a?)(1 — a*)| =

=l-a—ad*+a®—a*+a°+a° —a

Problem 10. An unbalanced penny and an unbalanced quarter, with probabilities of
heads p for the penny and ¢ for the quarter, are tossed together over and over. The
probability that the penny shows heads (strictly) before the quarter is 3/5, and the
number of tosses required for both coins to show heads simultaneously has expected
value exactly 4. Find the values of p and gq.

Solution:The probability that the penny shows head before the quarter is

- p(1—gq) _ p—pq

P=g(1+1-p)( =g+ -p) (=) +) = 1-(1-p)(1-¢9) p+q-pg

so we have
p—pg _ 3
ptq—pg 5
The expected number of tosses needed for both coins to show head simultaneously is

Pq Pq 1
pg + 2pq(1 — pq) + 3pg(1l — pg)® + - - = = —
( ) ( ) (1-01-pg)* (pg)* pq

We have

— =4.
pq
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We deduce pg = %. We get
dp—4pqg  4p-1 3

dp+4qg —4pg  4dp+49—1 5

SO
20p—5=12p+ 12qg — 3.
It follows that
8p—12¢—-2=0

SO 9
2 _2-12¢=0
q

11 1 1
——-—6=(--3)(-+2)=0.
@ q q q

Since ¢ > 0 we must have ¢ = % Because pg = i we get p = %.

and

REMARKS AND FURTHER QUESTIONS

Remark 1. In problem 2, a4, as,... is an increasing bounded sequence. Therefore,
the limit @ = lim,,, o @, must exist. What is a?

Remark 2. Can one generalize problem 3 to a multivariate polynomial? Suppose
that P is a polynomial in k£ variables with nonnegative integer coefficients. Your are
allowed to choose an integer vector a € Z* and ask for P(a). Then your allowed to
choose an integer vector b € ZF and ask for P(b). After this, you must determine all
the coefficients of the polynomial P.

Remark 3. In problem 7, how will the particles permute at time ¢ = 27. Does this
permutation only depend on the initial velocities?

Remark 4. Related to problem 8, one could ask if there exists a (discontinuous)
function f : R — R such that the graph of f intersects the graph of y = ax + b in
exactly two points for all a,b € R.

THANKS

Thanks to Jason Bell, Bogdan Ion, Mel Hochster and Hugh Montgomery for submitting
problems.



