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UNDERGRADUATE MATH COMPETITION 32
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Instructions. Write on the front of your blue book your student ID number. Do
not write your name anywhere on your blue book. Each question is worth 10 points.
For full credit, you must prove that your answers are correct even when the question
doesn’t say “prove”. There are lots of problems of widely varying difficulty. It is not
expected that anyone will solve them all; look for ones that seem easy and fun. No
calculators are allowed.

Problem 1. Suppose that at some time in the future there are N universities in the
Big Ten (including Michigan and Ohio State). A single-elimination tournament is to
be played as follows: Two teams are selected at random, and play a game. The loser
is eliminated and there are N − 1 undefeated teams. Two of them are selected at
random and they play a game. This continues until only one undefeated team is left.
in each game, the two teams involved have an equal probability of winning and these
probabilities are independent. What is the probability that Michigan and Ohio State
play against each other during this tournament?

There are N − 1 games because each game creates one loser and in the end there
are N − 1 losers. For the i-th game that is played, each of the

(
N
2

)
pairings is equally

likely. The probability that the i-th game is a game between Michigan and Ohio state

is therefore
(
N
2

)−1
. The probability that Michigan and Ohio state meet some time

during the tournament is (N − 1)/
(
N
2

)
= 2

N
.

Problem 2. Let a1 = 1, a2 = 2015, a3 = 20142015, a4 = 201320142015 , and so forth, so
that for 1 ≤ n < 2015, an+1 = (2016− n)an). Find, with proof, the rightmost 2 digits
of a2015.

Modulo 100 we have 22 ≡ 4, 210 ≡ 24, 220 ≡ 76, 221 ≡ 52, and 222 ≡ 4. It follows
that behavior thereafter is periodic with period 20, and so 220k+1 ≡ 52 mod 100 for
k ≥ 1. Since 34 = 81 ≡ 1 mod 20, it follows that 34h ≡ 1 mod 20, and so every number

of the form 234
s

ends in 52, including a2015.

Problem 3. A house shape is a convex 5-gon ABCDE such that ABCD is a rectangle,
and DE and EA have equal length. What is the maximal area of a house shape if the
perimeter is 1?

Suppose that |AB| = |CD| = a, |BC| = |AD| = 2b and |AE| = |DE| = c. The
perimeter is 2a+ 2b+ 2c = 1 and the area is

2ab+ b
√
c2 − b2 = 2b(1

2
− b− c) + b

√
c2 − b2 = b− 2b2 + bg(c)

1
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where g(x) =
√
x2 − b2−2x. for x with x ≥ b. Since g(

√
2b) = (1−2

√
2)b > −2b = g(b)

and g(
√

2b) > −2b > −x ≥ g(x) for x > 2b, the continuous function must have a
maximum on the interval (b, 2b). Suppose that g has a maximum at x = c. Then we
have

g′(c) =
c√

c2 − b2
− 2 = 0

So we get c = 2
√
c2 − b2, c2 = 4c2 − 4b2 and c = 2√

3
b. The maximal value of g

is g(c) = b√
3
− 4b√

3
= −
√

3b So g(x) has a maximum at x = 2√
3
b. For fixed b, the

maximum area is

b− 2b2 + bg(c) = b− (2 +
√

3)b2.

The maximum is at b = 1
2(2+

√
3)

= 1 − 1
2

√
3 and the maximal area is 1

2
− 1

4

√
3. (We

have c = 2√
3
b = 2

3

√
3− 1 and a = 1

2
− b− c = 1

2
− 1

6

√
3.)

Problem 4. Let αn be the largest real root of the polynomial

CN(x) =
n∑
i=0

(−1)ix2i

(2i)!
.

Prove that

lim
n→∞

αn
n

=
2

e
.

If x > 2n, then the sequence x2i

(2i)!
is strictly increasing. By a telescoping argument

Cn(x) > 0 if n is even and Cn(x) < 0 if n is odd. So 0 ≤ αn ≤ 2n. We have

Cn(x) = cos(x)−
∞∑

i=n+1

(−1)ix2i

(2i)!
.

In particular, we have

0 = Cn(αn) = cos(αn)−
∞∑

i=n+1

(−1)iα2i
n

(2i)!

So

α2n+2
n

(2n+ 4)!
≤ α2n+2

n

(2n+ 2)!
−(2n)2α2n+2

n

(2n+ 4)!
≤ α2n+2

n

(2n+ 2)!
− α2n+4

n

(2n+ 4)!
≤

∣∣∣∣∣
∞∑

i=n+1

(−1)iα2i
n

(2i)!

∣∣∣∣∣ = | cos(αn)| ≤ 1.

It follows that

α2n+2
n ≤ (2n+ 4)! ≈

√
2π(2n+ 4)

(2n+ 4

e

)2n+4

by Stirling’s formula. We get

lim sup
n→∞

αn
n
≤ 2

e
.
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We can choose βn such that αn − π ≤ βn ≤ αn and | cos(βn)| = 1. We get

β2n+2
n

(2n+ 2)!
≥

∣∣∣∣∣
∞∑

i=n+1

(−1)iβ2i
n

(2i)!

∣∣∣∣∣ = | cos(βn)| = 1.

A similar calculation shows that

lim inf
n→∞

αn
n

= lim inf
n→∞

βn
n

=
2

e
.

We conclude that limn→∞
αn

n
= 2

e
.

Problem 5. Find all the solutions to 2x = y2 + 15 where x and y are integers.

Modulo 3 we have 2x ≡ y2 mod 3, So y is not divisible by 3 and 2x ≡ y2 ≡ 1 mod 3.
It follows that x must be even, say x = 2z. Then we have (2z + y)(2z− y) = 15. There
are two cases. The first case is where 2z +y = 15 and 2z−y = 1. Taking the difference
yields 2y = 14 and y = 7. It follows that 2x = 64 and x = 6. In the second case,
2z + y = 5 and 2z − y = 3. It follows that 2y = 2 and y = 1. So we have 2x = 16 and
x = 4. So the only solutions are (4, 1) and (6, 7).

Problem 6. Suppose that f is a differentiable function from R to R such that f ′(x) > 0
and f(f(x)) = 2x+ 1 for all x ∈ R. What is f(x)? Prove your answer.

Let g(x) = f(x−1)+1. Then we have g(g(x)) = f(g(x)−1)+1 = f(f(x−1))+1 =
(2x− 1) + 1 = 2x. Suppose that g(x) = y. Then y = g(x) = g(g(g(x/2))) = 2g(x/2).
So we get g(x/2) = y/2. By induction we get g(x/2k) = y/2k. By continuity, and
taking k →∞ we get g(0) = 0. Moreover we get

g′(0) = lim
k→∞

g(x/2k)− g(0)

x/2k
=
y/2k

x/2k
=
y

x
.

So g(x) = y = g′(0)x and we have g(g(x)) = g′(0)2x = 2x. Since g′(0) > 0, we get
g′(0) =

√
2. It follows that g(x) =

√
2x and f(x) = g(x + 1) − 1 =

√
2(x + 1) − 1 =√

2x+ (
√

2− 1).

Problem 7. Numbers 9 and 10 are written on a blackboard. Anne and Pete are
playing the following game. Taking turns, the players double one number, subtract 1
from the other number, and substitute the results for the originals. Anne goes first.
The player who first reaches or exceeds 1000 wins the game. Both Anne and Pete
are very competitive, but only one of them is guaranteed to win by following a proper
strategy no matter how the other one plays. Who is it going to be?

We start with the numbers (9, 10). In every turn, a player replaces (x, y) by (2x, y−1)
or by (x− 1, 2y). Anne wins with the following strategy. First she replaces (9, 10) by
(8, 20). After that, she doubles x whenever Pete doubled y, and she doubles y whenever
Pete doubles x. This way, after each player has his/her tern, (x, y) gets replaced by

(x, y)→ (2x, y − 1)→ (2x− 1, 2y − 2)
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or

(x, y)→ (x− 1, 2y)→ (2x− 2, 2y − 1).

After Anne’s second turn, we have (14, 39) or (15, 38). The value of (x, y) changes in
each round according to the following table:

turn of Anne x y
1 x = 8 y = 20
2 14 ≤ x ≤ 15 38 ≤ y ≤ 39
3 26 ≤ x ≤ 29 74 ≤ y ≤ 77
4 50 ≤ x ≤ 57 146 ≤ y ≤ 153
5 98 ≤ x ≤ 113 290 ≤ y ≤ 305

After Anne’s 5th turn, Pete must double x because if he doubles y then Anne will
double y as well and y ≥ 4 · 290 > 1000. So Pete doubles x and we get

196 ≤ x ≤ 226, 289 ≤ y ≤ 304

Now Anne doubles x as well and we get

392 ≤ x ≤ 452, 288 ≤ y ≤ 303.

Now if Pete doubles x, then Anne doubles x and she wins. If Pete doubles y then Anne
doubles y and she wins as well.

Problem 8. The coefficients of a quadratic equation ax2 + bx + c = 0 are randomly
selected integers between −n and n inclusive, with all choices of an integer equally
likely. Let Pn be the probability that the roots of the equation are real. Find lim

n→∞
Pn.

Consider the set S = {(a, b, c) ∈ [−1, 1]3 | b2 − 4ac ≥ 0}. Then the roots of
ax2 + bx + c = 0 are real if ( a

n
, b
n
, c
n
) ∈ S. By taking the limit n → ∞, the limit

limn→∞ Pn becomes 1
8
vol(S). We compute the volume of S as:∫ 1

−1
u(1

4
b2) db

where u(t) is the area of {(a, c) ∈ [−1, 1]2 | ac ≤ t}, 0 ≤ t ≤ 1. This area is

4t+ 2

∫ 1

t

1 +
t

x
dx = 2t+ 2− 2t log(t).

So

u(1
4
b2) = 1

2
b2 + 2− 1

2
b2 log(1

4
b2) = (1

2
+ log(2))b2 + 2− b2 log(|b|).

We have∫ 1

−1
b2 log(|b|) db = 2

∫ 1

0

b2 log(b) db = 2

[
1

3
b3 log(b)

]1
0

− 2

3

∫ 1

0

b2 db = −2

9
.
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It follows that ∫ 1

−1
u(

1

4
b2) db = 2

3
(1
2

+ log(2)) + 4 + 2
9

= 41
9

+ 2
3

log(2)

The probability of real roots is 41
72

+ 1
12

log(2).

Problem 9. Consider the triangles with sides 0 < a < b < c and area A > 0 are such
that a, b, c, A is an arithmetic progression (i.e., b − a = c − b = A − c). Find greatest
lower bound of the possible values for b.

We may write a, b, c, A as b− d, b, b+ d, b+ 2d, where 0 < d < b. The semi-perimeter
is 3b/2, and so (∗) (b+2d)2 = (3b/2)(b/2)(b/2+d)(b/2−d) and 16(b+2d)2 = 3b2(b2−
4d2), i.e. 16b2+64bd+64d2 = 3b4−12b2d2. Therefore (12b2+64)d2+64bd+16b2−3b4 = 0.
For b > 0, this has a positive root for d if and only if 16b2 − 3b4 < 0, i.e., b2 > 16/3.
Hence, the greatest lower bound for values of b is 4/

√
3 or 4

√
3/3. Note that the

equation (∗) implies that b/2− d is positive, and so b > d is automatic.

Problem 10. In the waiting room there are n chairs arranged in a row. A chair is
“available” if nobody is sitting on that chair or a chair right next to it. People are
entering the room, one person at a time, and sit down in one of the available chairs
at random (all the available chairs have the same probability). This continues until
there are no more available chairs. Let f(n) be the expected number of people sitting
down when there are no more available chairs. For example, if n = 3, then with
probability 1/3 the first person sits in the middle and no more people can sit down,
and with probability 2/3 the first person sits at the end and two people get seated, so
f(3) = 1

3
· 1 + 2

3
· 2 = 5

3
. Show that

f(n) =
n∑
i=0

(n− i)(−2)i

(i+ 1)!
.

Let an be the expected value. The first person will sit down on any chair, each chair
equally likely. Given that the person sits down in chair i, the expected number of
people sitting in a chair below i is ai−2 and the expected number of people sitting in a
chair above i is an−i−1. So we have

an = 1 +
1

n

n∑
j=1

(aj−2 + an−j−1) = 1 +
2

n

n∑
j=1

aj−2

If we multiply this equation with xn−1 and sum over all positive integers n, we get

A′(x) =
1

(1− x)2
+

2x

1− x
A(x).

where

A(x) =
∞∑
n=1

anx
n.
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We have to solve the differential equation

A′(x)− 2x

(1− x)
A(x) =

1

(1− x)2
.

Let

g(x) =

∫ x

0

−2y

1− y
dy =

∫ x

0

2− 2

1− y
dy = 2x+ 2 log(1− x)

We have (
eg(x)A(x)

)′
=

eg(x)

(1− x)2
= e2x.

It follows that
(1− x)2e2xA(x) = eg(x)A(x) = 1

2
e2x − 1

2

and

A(x) =
1− e−2x

2x

x

(1− x)2
=
∞∑
i=0

(−2)ixi

(i+ 1)!

∞∑
j=0

jxj

Looking at the coefficient of xn gives the desired formula.


