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Abstract. The Magnus representation of the Torelli group I(Σ1
g) of a surface

Σ1
g is a group homomorphism r1 : I(Σ1

g) → GL2g(Z[H1(Σ1
g ;Z)]). This paper

characterizes the kernel of r1 for commutators of simply intersecting pairs,

commutators of Dehn twists whose associated curves have trivial algebraic
intersection. Specifically, we show that under certain conditions, this family

of commutators is not in the kernel. To prove our result, we motivate and

harness a geometric interpretation of r1 that is due to Suzuki [13].
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Introduction

Given a surface Σ1
g of genus g with one boundary component, we can study its

group of symmetries. We can study the mapping class group of Σ1
g. We define

the mapping class group MCG(Σ1
g) to be the group of isotopy classes of orientation

preserving homeomorphisms of Σ1
g that fix the boundary pointwise.

One natural representation of this group is the symplectic representation,
the action induced by MCG(Σ1

g) on the first homology group H = H1(Σ1
g;Z). In

this paper, we study the kernel of the symplectic representation, called the Torelli
group of Σ1

g. The Torelli group I(Σ1
g) is the subgroup of the mapping class group

that acts by the identity on H.
A different representation of the mapping class group is the Magnus represen-

tation, an action of MCG(Σ1
g) on the fundamental group Γ = π1(Σ1

g, ∗). Here, ∗
is a basepoint on the boundary of Σ1

g. Unlike the symplectic representation, the

Magnus representation of MCG(Σ1
g) is not a genuine representation but a function

r : MCG(Σ1
g)→ GL2g(Z[Γ]).

However, r can be modified to be genuine on one distinguished subgroup: the Torelli
group of Σ1

g.

We define the Magnus representation of the Torelli group of Σ1
g by restrict-

ing the mapping r to I(Σ1
g) and abelianizing the coefficients linearly. We denote

the modified representation by

r1 : I(Σ1
g)→ GL2g(Z[H]).

This paper characterizes the kernel of r1 for commutators of simply inter-
secting pairs, commutators of Dehn twists whose associated curves have trivial
algebraic intersection [10]. Specifically, Margalit1 asked us the following question:

Are there families of commutators of simply intersecting pairs that are not in the
kernel of r1?

and we answered in the affirmative:

Let [Tα, Tβ ] : Σ1
g → Σ1

g be a commutator of a simply intersecting pair such that

g ≥ 3, i(α, β) > 0, and α ∪ β does not separate Σ1
g. Then, [Tα, Tβ ] /∈ ker r1.

The kernel of r1 has been characterized before. In 2001, Suzuki [12] showed that
r1 was not faithful when g ≥ 2. Four years later, he [13] proved that commutators
of simply intersecting pairs whose associated curves are separating and have a geo-
metric intersection of two are in the kernel of r1 when g ≥ 3. This paper considers
a case not characterized by Suzuki. We prove that commutators of simply inter-
secting pairs whose associated curves are non-disjoint and form a non-separating
pair are not in the kernel when g ≥ 3.2

To motivate our main result, we split the paper into two halves. In the first half,
we give a survey of surfaces, curves, and mapping class groups. We outline the
technical setting required for our theorem, including Dehn twists and algebraic and
geometric intersection. Our exposition builds to a computational interpretation of
r1, where we introduce the Fox derivative [4]. Then, the climax occurs in Section
8. Applying the Fox derivative, we prove a specific case of our theorem.

1D. Margalit (personal communication, June 2019)
2In either ours or Suzuki’s case, the specified family of commutators does not occur in MCG(Σ1

g)

when g < 3.
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We strengthen this specific case to our main result in the second half of the
paper. At this point, our exposition becomes markedly more nuanced. We express
the first homology of a surface as a symplectic vector space. We define the universal
abelian covering space. Finally, we construct and study a cyclic covering space.
This machinery from algebraic topology and covering space theory allows us to
motivate and harness a geometric interpretation of r1 that is due to Suzuki [13].
With Suzuki’s interpretation, we can finally prove our strongest result.

Note to the Reader

This paper is largely exposition. It is intended for the reader whose mathematical
maturity mirrors mine at the start of this research—uninitiated into the world
of surface topology. Naturally, most of the paper is devoted to developing the
theory needed to prove my result. Only Sections 8, 11, and 12 contain original
research. For the initiated, if this format proves too tedious, then you could consider
skipping Sections 1-6. However, it was important to me that this paper prioritized
accessibility over efficiency.

1. Surfaces

This story opens with our first main objects of study: compact, oriented sur-
faces. Compact, oriented surfaces are compact 2-manifolds that admit an orienta-
tion. Some familiar examples include spheres and tori. We can generate more com-
plicated ones by gluing handles (increasing genus) or removing open disks (adding
boundary components).

Up to homeomorphism, there are only countably many such manifolds. This
brings us to the first classification theorem of the paper:

Theorem 1.1 (Classification Theorem for Surfaces). Any compact, oriented sur-
face is homeomorphic to one of the following “model” surfaces, classified by its
genus and boundary components:

Figure 1. Model surfaces

Let Σbg be a compact, oriented surface of genus g with b boundary components.
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The Classification Theorem for Surfaces should not be taken lightly. It is deeply
rooted in a result from algebraic topology, which states:

Theorem 1.2. Any compact, oriented surface admits a finite triangulation.

A finite triangulation of a surface Σbg is a finite graph consisting of vertices,
edges, and faces of triangles. When embedded into Euclidean space, this finite
triangulation is homeomorphic to the starting surface. It roughly describes a de-
composition of Σbg into finitely many triangles. In this vein, Theorem 1.1 is the
statement:

Any finite triangulation of a compact, oriented surface is homeomorphic to one of
the model surfaces.

Not unexpectedly, there is a slick, algebraic formula connecting 1.1 to 1.2.

Corollary 1.3. Endow Σbg with a finite triangulation consisting of V vertices, E

edges, and F faces. Then, the Euler characteristic χ(Σbg) satisfies the equality:

χ(Σbg) = V − E + F = 2− 2g − b.

Figure 2. Finite triangulations of surfaces pictured from left to
right: sphere, torus, disk

2. Curves

In studying surfaces, we are just as equally interested in studying their simple
closed curves. In a surface Σbg, a simple closed curve is an embedding γ : S1 → Σbg.
That is, γ is a non-intersecting, closed loop.

Figure 3. Examples of simple closed curves

Despite the name, simple closed curves can be anything but simple. The curves
in the above figure are technically simple. (Simple just means that the maps are
injective.) However, simple closed curves can range in their properties. To account
for the diversity of curves that can occur in a surface, we will need to define some
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terms. The following definition describes an equivalence relation that we can place
on any embedding, including curves.

Definition 2.1. Two embeddings f : X → Σbg and g : X → Σbg are isotopic

iff f and g related by a homotopy H : X × I → Σbg so that for each t ∈ I,

Ht : X × {t} → Σbg is an embedding. We denote isotopy equivalence by '.

Isotopy classes of curves and later, homeomorphisms are key to the theory of
mapping class groups. Keep Definition 2.1 in your back-pocket! If this definition is
confusing to you, then use the following heuristic description instead:

Two embeddings are isotopic iff one can be “wiggled” into the other.

In what follows, we designate isotopy (wiggle) classes of curves with standard
script.

Definition 2.2. For a pair of isotopy classes of simple closed curves {a, b}, their
geometric intersection i(a, b) is the minimum number of intersections among all
pairs of representatives for the given classes. Simply put,

i(a, b) = min{|α ∩ β| : α ∈ a and β ∈ b}.

In Figure 3, the geometric intersection between α and β is 2. Conveniently, the
pictured curves already realize their minimum intersection: i(α, β) = |α∩β|. When
this occurs, we say that α and β are in minimal position.

There is an easy way to check that two curves are in minimal position. They
cannot share tangential intersections or form bigons. The neighborhood of a bigon
has the following picture:

Figure 4. Neighborhood of a bigon

Before we move on, we make one final note on curve intersections.

Definition 2.3. For a pair of simple closed curves {α, β}, their algebraic inter-

section î(α, β) is the sum of the signed, transversal intersections between α and
β.

The specified orientation on a surface induces signs on all of the intersections
between curves. In the case of a surface with a counterclockwise orientation, the
neighborhoods of the positive and negative intersections have the following pictures:
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Figure 5. Signs induced by a counterclockwise orientation

3. Change of Coordinates Principle

The next definition gives rise to a classification theorem for curves.

Definition 3.1. Let β : S1 → Σbg be a simple closed curve. If we cut Σbg along β,

then we obtain a compact, cut surface Σbg/β. The cut surface is equipped with a
homeomorphism h between two of its boundary components so that

(1) the gluing Σbg/β/h(x)∼x is homeomorphic to Σbg, and

(2) the images of these components after gluing is β [3, pg. 36].3

Cut surfaces can be connected or disconnected. In Figure 3, the cut surface
Σbg/γ has two connected components while Σbg/α and Σbg/β each have only one. We
will call the curves that separate surfaces separating and the curves that do not
separate surfaces, non-separating. In fact,

Proposition 3.2. All non-separating simple closed curves in Σbg are related by a
homeomorphism of the surface.

Proof. Endow Σbg with a finite triangulation. Let α : S1 → Σbg be any non-
separating curve. Up to isotopy, we can assume that α does not bisect any of
the faces in the triangulation.

If we cut along α in Σbg, then the number of faces in the finite triangulation does
not change. Cutting only doubles the number of edges and vertices along α and
adds two boundary components to the surface. Because χ(Σbg/α) = χ(Σbg), the cut

surface Σbg/α is homeomorphic to Σb+2
g−1 by Corollary 1.3.

Since α was arbitrary, for any other non-separating curve β : S1 → Σbg, the cut

surfaces Σbg/α and Σbg/β are homeomorphic. Choose a homeomorphism between

Σbg/α and Σbg/β that respects the equivalence relations given by Definition 3.1.
Such a homeomorphism descends and restricts to a homeomorphism between α to
β.4 �

This result is not just an incarnation of the Classification Theorem for Sur-
faces [1.1] but of a trick in surface topology known as the Change of Coordinates
Principle. In the same way that the theorem classifies surfaces, the trick classifies
collections of simple closed curves that share the same “intersection pattern” in a

3We slightly abuse notation by using two meanings of the forward slash in the gluing quotient

Σb
g/β/h(x)∼x. The first instance describes the cut surface, while the second describes the quotient

of the cut surface by the equivalence relation.
4Exercise: By a similar argument, we can show that two separating curves in Σb

g are related
by a homeomorphism of the surface iff their cut surfaces are homeomorphic. Use this argument

to classify all separating curves in Σb
g .
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surface [3, pg. 38]. This classification is up to a homeomorphism of the surface.
Thus, up to some homeomorphism, Change of Coordinates can transform any spe-
cific collection of curves into a general picture. We end this chapter with one more
of the trick’s (and the theorem’s) incarnations.

Proposition 3.3. All pairs of simple closed curves {α, β} ⊂ Σbg satisfying i(α, β) =
1 are related by a homeomorphism of the surface.

Proof. Let {α, β} be constructed as above. First, we cut along α. (We could have
just as easily cut along β. By Change of Coordinates, the order of cutting does not
matter.)

The cut surface Σbg/α has two more boundary components and one less han-

dle than Σbg. In addition, β is broken into a single arc connecting the boundary
components created by cutting along α.

Cutting along the remaining arc of β does not remove any handles but connects
the two α-boundary components. Thus, Σbg/(α ∪ β) is a surface with one more
boundary component and one less handle than the original. It is homeomorphic to
Σb+1
g−1.
We conclude this argument by the concluding one in Proposition 3.2. Take any

other cut surface associated to a pair of curves {α′, β′} constructed as in Proposition
3.3. Then, find a homeomorphism between both cut surfaces that descends and
restricts to a homeomorphism between {α, β} and {α′, β′}. �

4. Symmetries

We can improve the previous propositions by requiring that the desired home-
omorphisms between curves preserve the specified orientations and restrict to the
identity on the boundary components of the starting surfaces. In the associated
proofs, we just needed to choose similarly orientation preserving homeomorphisms
between the cut surfaces that fix the uncut boundary components pointwise. (These
“uncut” boundary components are fixed by the quotients that equip the cut sur-
faces.) Such homeomorphisms induce homeomorphisms with the same properties
between curves.

We can think of the orientation preserving homeomorphisms of a surface that
fix the boundary pointwise as the symmetries of the surface. For surfaces without
boundary, their symmetries always include rotations.

Figure 6. Rotation by π/3

A more complicated family of symmetries arises for every surface: Dehn twists
about simple closed curves. We can define a Dehn twist for any simple closed curve
in a surface.
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Definition 4.1. Let α : S1 → Σbg be a simple closed curve. Choose a closed regular
neighborhood N of α and an orientation preserving homeomorphism φ : N → A,
where A = S1 × [0, 1] is an annulus. Define the twist homeomorphism T : A → A
by the formula:

T (θ, t) := (θ + 2πt, t).

Then, the Dehn twist about α is defined piecewise by

Tα(x) :=

{
φ−1Tφ(x) x ∈ N
x otherwise.

Figure 7. The Dehn twist about the boundary curve in an annulus

Our definition for Dehn twists is well-defined up to isotopy. Though we made
two choices: a closed regular neighborhood N and an orientation preserving home-
omorphism φ, both of these choices are unique up to isotopy. Note that regular
neighborhoods of isotopic curves are isotopic [7].

In our context, isotopy-equivalence is sufficient for equivalence. The next propo-
sitions are based on this notion of equivalence. In Section 6, isotopy-equivalence
becomes ubiquitous.

Proposition 4.2. Let α : S1 → Σbg and α′ : S1 → Σbg be isotopic simple closed

curves. Then, Tα : Σbg → Σbg and Tα′ : Σbg → Σbg are isotopic Dehn twists.

Proof. Once again, regular neighborhoods of isotopic curves are isotopic. �

Proposition 4.3. Let α : S1 → Σbg and β : S1 → Σbg be simple closed curves.

Let f : Σbg → Σbg be a homeomorphism such that f(α) = β. Then, we have the
equivalence

fTαf
−1 ' Tf(α) = Tβ .

Proof. Even better, we have equality

fTαf
−1 = Tf(α).

The homeomorphism f−1 maps a closed regular neighborhood of β to a closed
regular neighborhood of α. Then, the Dehn twist rotates the α-annulus by 2π
before f maps the rotated α-annulus to a rotated β-annulus. Taken together, these
steps define the Dehn twist about β. �
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5. Curve Surgery

To study the action of Dehn twists on simple closed curves, we define curve
surgery—a non-medical procedure that depicts this action on curve intersections.
Let α and β be two simple closed curves in minimal position in a surface. Then,
the Dehn twist of β about α has the following recipe via curve surgery.

Cut α and β at points in their respective images such that the cut or surgered
arcs consist of one arc from β and i(α, β) arcs from α. In addition, the β-arc should
intersect the α-arcs in i(α, β) points. Up to isotopy, the picture for these surgered
arcs is the leftmost diagram in Figure 8.

At each point of intersection between α and β, we operate on the surgered arcs
as in the rightmost diagram. That is, we trace a parallel copy of β in the leftmost
diagram until we hit a point of intersection. Then, we turn left and follow α. Once
we are back at the intersection point, we turn right. If we perform this surgery for
all intersections, then from the parallel copy, we obtain Tα(β).

Figure 8. Pictured left to right: the surgered arcs of α and β and
the recipe for surgery

From Figure 8, it appears that if i(α, β) = 1, then i(β, Tα(β)) = 1 as well.
However, this supposes that Tα(β) and β are in minimal position in a diagram
that does not depict genus or boundary components. Are these curves in minimal
position?

Proposition 5.1. Let a and b be two isotopy classes of simple closed curves in a
surface Σbg. Let n be an integer. Then,

i(Tna (b), b) = |n|i(a, b)2

Proof. Choose two representatives α ∈ a and β ∈ b so that α and β are in minimal
position. As in Figure 8, we compute Tnα (β) with curve surgery, starting with the
first Dehn twist. Trace a parallel copy of β in the leftmost diagram, performing
surgery as in the rightmost whenever β intersects α. Since we perform this surgery
i(a, b) times, the resulting curve Tα(β) must cross β in i(a, b)2 points in the diagram.
After twisting n−1 more times, the curves must cross each other in |n|i(a, b)2 points.
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Figure 9. The Dehn twist of β about α when i(a, b) = 2 and n = 1

Though we have assumed that α and β are in minimal position, we should check
that Tnα (β) and β are in minimal position in the diagram. Cut β and Tnα (β) at
their points of intersection. This produces two cut curves: two collections of arcs
originating from β and Tnα (β).

If β and Tnα (β) formed a bigon, then this bigon is the union of an arc taken from
the β-collection and an arc taken from the Tnα (β)-collection. The arcs must share
a trivial algebraic intersection. Thus, the candidate bigon has just one picture up
to isotopy. When i(a, b) = 2 and n = 1, this picture is Figure 10.

Figure 10. The candidate bigon when i(a, b) = 2 and n = 1

In general, the arc originating from Tnα (β) runs parallel to α. If this arc formed
a bigon with β, then α and β must also form one—a contradiction. Therefore, no
pictures can depict bigons. The curve surgery diagrams must depict Tnα (β) and β
in minimal position. �

The next proposition kicks the previous one up a notch. To prove it, we need to
assume that for a triple of simple closed curves in a surface, each curve can be put
into minimal position with respect to the other two. For a proof of this result, see
[3], Lemma 3.3. Technicalities aside, we move onto the main event of this section.

Proposition 5.2. Let a, b, and c be three isotopy classes of simple closed curves
in a surface Σbg. Let n be an integer. Then,∣∣∣∣i(Tna (b), c)− |n|i(a, b)i(a, c)

∣∣∣∣ ≤ i(b, c)
Proof. With Proposition 5.1 and Lemma 3.3 [3], we fix the following triple of curves.
Let β ∈ b, β′ ∈ Ta(b), and γ ∈ c be representatives such that they are in minimal
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position with respect to each other. We also assume that γ does not intersect β∩β′
by applying an isotopy.

There is a continuous map from the disjoint union of |n|i(a, b) copies of S1 into
Σbg with image β ∪ β′. The image of each copy of S1 is isotopic to a representative
αi ∈ a. In addition, any αi will intersect γ in at least i(a, c) points. Thus, we derive
the inequality

|n|i(a, b)i(a, c) ≤ |(β ∪ β′) ∩ γ| = i(Tna (b), c) + i(b, c).

We now find representatives for Tna (b) and c that intersect in |n|i(a, b)i(a, c)+i(b, c)
points. If they exist, then we can prove the reverse inequality of the absolute value:

i(Tna (b), c) ≤ |n|i(a, b)i(a, c) + i(b, c).

Choose β′ so that it lies in the union of β and small, regular neighborhoods of the
images of the disjoint copies of S1. Choose γ so that it transversally intersects
each of these neighborhoods in i(a, c) points and β in i(b, c) points disjoint from
these neighborhoods. Finally, count the intersections to prove that β′ and γ are
the desired representatives. �

Unravelling these propositions,

Corollary 5.3. Dehn twists can have infinite order.

6. The Group of Symmetries

With the next definition, we change perspectives from topology to group theory.

Definition 6.1. Let Homeo+(Σbg, ∂Σbg) be the set of orientation preserving home-

omorphisms of Σbg that fix the boundary pointwise. Let ' denote the isotopy
equivalence relation from Definition 2.1. Then, the quotient

Homeo+(Σbg, ∂Σbg)/'

forms a group under functional composition. We take this group to be the mapping
class group MCG(Σbg) of a surface Σbg and call its elements mapping classes.

As group theorists, we might ask: Which mapping classes generate the mapping
class group? Take Corollary 5.3 as a clue.

Theorem 6.2 (Dehn-Lickorish Twist Theorem [2]). The mapping class group of a
surface is finitely generated by Dehn twists about simple closed curves.

Dehn twists are the natural candidate. Mapping class groups can be big and
Dehn twists can have infinite order as mapping classes. The many proofs of Theo-
rem 6.2 are also big but in a different sense. For brevity, we provide the bases cases
of an inductive proof and direct you to [11] for the inductive step.

Proposition 6.3. The mapping class group of a disk is trivial.

Proof. Let D2 be the closed unit disk. Let f : D2 → D2 be an orientation-
preserving homeomorphism that fixes the boundary pointwise. Then, f is isotopic
to the identity via Alexander’s trick:

F (x, t) :=

{
(1− t)f( x

1−t ) 0 ≤ |x| < 1− t
x 1− t ≤ |x| ≤ 1.

�



12 MIRA WATTAL

Proposition 6.4. The mapping class group of a sphere is also trivial.

Proof. Identify the sphere S2 with the image of the natural projection π : D2 →
D2/∂D2 . Fix a point x ∈ D2/∂D2 . Let f : D2/∂D2 → D2/∂D2 be an orientation
preserving homeomorphism (that fixes the boundary vacuously). Up to isotopy, we
can assume that f(x) = π(∂D2) = x.

There is a second orientation preserving function f̂ : D2 → D2 that makes the
following diagram commute.

D2 D2

D2/∂D2 D2/∂D2

f̂

π π

f

The function f̂ is defined by f̂ �D2−∂D2 := f and f̂ �∂D2 := id. It is not difficult to

check that f̂ is a homeomorphism or that it is an element of MCG(D2) ∼= 0. (A
proof of continuity with open sets should suffice.) Thus, if F : D2 × [0, 1] → D2

is an isotopy between f̂ and the identity, then F descends uniquely to an isotopy
between f and the identity. �

7. Representations

We have defined surfaces, curves in surfaces, symmetries specified by curves,
and a group of symmetries. With all of this theory, we can finally define our main
objects of study: representations of the mapping class group.

Definition 7.1. A representation of the mapping class group is a group homo-
morphism from this group to a group of matrices.

Representations greatly simplify our analysis of mapping class groups. Much
of linear algebra has already been discovered! In this research, we are concerned
with two such representations: the symplectic representation and the Magnus
representation.

7.1. The Symplectic Representation. The symplectic representation of MCG(Σbg)
is the action of mapping classes on a symplectic vector space over Z. This vector
space is maximally generated by the following curves in Σbg.

Figure 11. 2g + b− 1 simple closed curves in Σbg

The basis in Figure 11 is a basis for first homology. Thus, we re-express our
initial description in terms of this new vocabulary.
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Definition 7.2. Let f : Σbg → Σbg be a mapping class and f? : H1(Σbg;Z) →
H1(Σbg;Z) be the induced map on first homology. Choose the basis {αi} from Figure

11. Then, the symplectic representation of MCG(Σbg) is a group homomorphism

s : MCG(Σbg)→ Sp|αi|(Z)

that sends a mapping class f : Σ1
g → Σ1

g to a matrix whose ith column corresponds
to f?(αi).

The mapping class group of a torus is isomorphic to Sp2(Z). Naturally, its sym-
plectic representation is a group isomorphism. Symplectic representations with
more interesting kernels correspond to surfaces of higher genus. Nevertheless,
whether they are interesting or empty, the kernels of these representations are
objects of significant mathematical study.

Definition 7.3. The Torelli group I(Σbg) of a surface Σbg is the kernel of the

symplectic representation of MCG(Σbg). We call its elements Torelli classes.

In the 1970’s, Birman and Powell [9] found a generating set for I(Σbg). This set
consists of the following kinds of homeomorphisms.

(1) Separating twists. This notation is shorthand for Dehn twists about
separating curves.

(2) Bounding pair maps. Bounding pair maps are composites of Dehn twists
TαT

−1
β whose associated curves form a bounding pair. In other words,

{α, β} is a disjoint, homologous, and non-isotopic pair of simple closed
curves.

Three decades later, Putman [10] constructed an infinite presentation, adding
one more family of homeomorphisms to Birman and Powell’s set.

(3) Commutators of simply intersecting pairs. Commutators of simply
intersecting pairs are commutators of Dehn twists [Tα, Tβ ] whose associated
curves simply intersect. In this case, {α, β} share a trivial algebraic
intersection.

Figure 12. Pictured from left to right: separating twist, bound-
ing pair map, and commutator of a simply intersecting pair

7.2. The Magnus Representation. The Magnus representation of the mapping
class group is defined for surfaces with one boundary component. It is an action of
mapping classes on a free group that is maximally generated by the following based
curves in Σ1

g.
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Figure 13. 2g simple closed curves based at ∗

We can define the Magnus representation with the following formula from Fox
calculus [4].

Definition 7.4. Given a free group G with generators {βi}, the Fox derivative
with respect to βi is a function

∂

∂βi
: G→ Z[G].

Here, Z[G] is the free module over Z with basis G.5 We first define this derivative
on the generators of G:

∂βi
∂βj

:=

{
1 i = j

0 otherwise.

After setting the group multiplication to concatenation, we extend to all of G with
two more rules.

(1) Product Rule. ∀a, b ∈ G :

∂(ab)

∂βi
:=

∂a

∂βi
+ a

∂b

∂βi

(2) Reciprocal Rule.

∂β−1i
∂βj

:=

{
−β−1i i = j

0 otherwise

Like the analytic derivative, we can define the Fox derivative on the automor-
phisms of G. If G is π1(Σ1

g,−), the fundamental group of Σ1
g, then we can even

define this derivative on the automorphisms induced by mapping classes. Note that
Figure 13 depicts a possible basepoint and generators for π1(Σ1

g,−).

Definition 7.5. Let f : Σ1
g → Σ1

g be a mapping class. Choose the basepoint ∗ on

the boundary and the generators {βi} in Figure 13. Let f∗ : π1(Σ1
g, ∗)→ π1(Σ1

g, ∗)
be the induced map on fundamental groups. Then, the Fox derivative of f is a
matrix with entries: [

∂f∗(βi)

∂βj

]
ij

.

Out of ease, we set Γ = π1(Σ1
g, ∗) and H = H1(Σ1

g;Z). Putting definitions and
notation together,

5That is, Z[G] consists of polynomials of elements in G with integer coefficients.
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Definition 7.6. The Magnus representation of MCG(Σ1
g) is a function

r : MCG(Σ1
g)→ GL2g(Z[Γ])

that sends a mapping class f : Σ1
g → Σ1

g to a matrix with entries:[
∂f∗(βj)

∂βi

]
ij

.

Here, ( ) : Z[Γ]→ Z[Γ] denotes the anti-automorphism, sending βi to β−1i .

The Magnus representation of the mapping class group is not a genuine represen-
tation. This representation satisfies a “crossed” formula that was initially described
by Morita [8].

Proposition 7.7. Let f : Σ1
g → Σ1

g and g : Σ1
g → Σ1

g be mapping classes. Then,

r(fg) = r(f)f∗r(g),

where f∗r(g) is the matrix obtained from r(g) by applying f∗ to each entry. We
extend the induced map linearly if necessary.6

However, r can be modified to be a genuine representation on one distinguished
subgroup: the Torelli group of Σ1

g.

Definition 7.8. The Magnus representation of the Torelli group of Σ1
g is a

group homomorphism
r1 : I(Σ1

g)→ GL2g(Z[H])

that sends a Torelli class f : Σ1
g → Σ1

g to a matrix

r1(f) :=a r(f).

Here, a : Γ→ H is the abelianization of Γ. Thus, ar(f) is the matrix obtained from
r(f) by applying a to each entry.

8. The Specific Case

Armed with a computational interpretation of r1, we can prove a preliminary
result. This result is a specific case of our main theorem. We choose α and β to
be the curves embedded into the subsurface of Σ1

g that has three handles and one
boundary component. This surface and these curves are depicted in Figure 14.
With α and β fixed as in the figure, we prove that [Tα, Tβ ] is not in the kernel of
r1.

Figure 14. The fixed simple closed curves α and β in a subsurface
of Σ1

g

6Remember that we defined f∗ on the free non-abelian group Γ, not the free module Z[Γ]. To
fix this, we just extend f∗ linearly: Given a, b ∈ Γ and n ∈ Z, set f∗(a+ nb) := f∗(a) + nf∗(b).
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Theorem 8.1. Let {α, β} be constructed as above. Then, [Tα, Tβ ] : Σ1
g → Σ1

g is a
commutator of a simply intersecting pair that is not in the kernel of r1.

Proof. Specifically, we prove that r1([Tα, Tβ ])12 6= 0. We compute r1([Tα, Tβ ])12
with the recipe outlined in Subsection 7.2. To start, we twist β2.

Figure 15. The image of β2 under [Tα, Tβ ]

The image of β2 under [Tα, Tβ ] is the following seventeen letter word in π1(Σ1
g, ∗):

β2β
−1
5 β1β6β

−1
4 β5β4β

−1
6 β−14 β−15 β4β

−1
6 β−11 β5β4β6β

−1
4 .

We evaluate the Fox derivative of [Tα, Tβ ] with respect to β1 at this word. Set

T = [Tα, Tβ ]. Denote the i through j letters of T∗(β2) by Bji . Then, we write

∂T∗(β2)

∂β1
=
∂β2
∂β1

+ β2
∂B17

2

∂β1

= β2
∂B17

2

∂β1
.

More applications of Fox derivatives yield

= β2(β−15 (1 +B12
3 (−β−11 +B16

13

∂β−14

∂β1
))),

which simplifies to a non-zero element in Z[H]:

= β2β
−1
5 − β2β−15 β−16 .

Applying the anti-automorphism, we obtain

β2β
−1
5 − β2β−15 β−16 = β−12 β5 − β−12 β5β6

6= 0.

�

Second Note to the Reader

Depending on your mathematical background, you could consider treating this
last section as the conclusion of the paper. The penultimate three sections are more
nuanced and thus, less accessible than the previous. For brevity, we assume that the
reader is familiar with intermediate constructions of first homology, fundamental
groups, and covering spaces.
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9. The Torelli Group, Revisited

With some additional facts from algebraic topology, we can prove that separating
twists, bounding pair maps, and commutators of simply intersecting pairs are all
elements in I(Σbg). In what follows, we designate homology classes of simple closed
curves with square brackets.

Fact 9.1. The algebraic intersection

î(−,−) : H1(Σbg;Z)×H1(Σbg;Z)→ Z

is a symplectic bilinear form on first homology.

Remember that we called the first homology of a surface a symplectic vector
space. Indeed, it has a symplectic bilinear form: the algebraic intersection. With
this form, we can express the second fact.

Fact 9.2. Let α : S1 → Σbg be a simple closed curve and Tα? : H1(Σbg;Z) →
H1(Σbg;Z) be the induced twist on first homology. Then, Tα? is defined by

Tα?(−) = [−] + î(α,−)[α].

The third and final fact follows from the definition of first homology. Boundaries
are null-homologous.

Fact 9.3. A simple closed curve α : S1 → Σbg is separating iff α is null-homologous.

The curves that separate surfaces are inherently boundaries! They bound em-
bedded submanifolds in their respective surfaces. Putting these facts together,

Proposition 9.4. The following are elements in I(Σ1
g): separating twists, bounding

pairs maps, and commutators of simply intersecting pairs.

Proof. The proof of each case in the proposition is the application of at least two
of the three preceding facts. For brevity, we only check the case of commutators of
simply intersecting pairs.

Let [Tα, Tβ ] : Σ1
g → Σ1

g be a commutator of a simply intersecting pair. By
Proposition 4.3,

TβT
−1
α T−1β = T−1Tβ(α)

,

and by Fact 9.2,

Tβ?(α) = [α] + î(α, β)[β] = [α].

A corollary to the second fact is that Dehn twists about homologous curves induce
the same group homomorphisms on first homology. So after choosing α as our
homology representative for Tβ?(α), we obtain

[Tα, Tβ ]? = (TαT
−1
Tβ(α)

)? = Tα?T
−1
α ? = id?.

�

10. The Magnus Representation, Revisited

In 2003, Suzuki [13] gave an original interpretation of the Magnus representation
of the Torelli group. His interpretation avoids the computational hairiness of taking
the Fox derivative, but it is deep into the weeds of abstract mathematics. It uses
the universal abelian covering space of Σ1

g.
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Definition 10.1. A path-connected covering of Σ1
g is abelian if it is normal and

has an abelian deck transformation group.

By the classification theorem for covering spaces, subgroups of the fundamental
group π1(Σ1

g,−) determine path-connected coverings of Σ1
g. In particular, normal

subgroups N ⊂ π1(Σ1
g,−) determine normal covering spaces whose deck transfor-

mation groups are precisely the quotients π1(Σ1
g,−)/N . In this way,

Definition 10.2. The universal abelian covering space of Σ1
g is the abelian

path-connected covering p : Σ→ Σ1
g that corresponds to the commutator subgroup

of π1(Σ1
g,−). Necessarily, its deck transformation group is the abelianization of

π1(Σ1
g,−): the first homology group H1(Σ1

g;Z).

Suzuki re-expressed r1 as an action of Torelli classes on a vector space that can be
associated to the universal abelian covering space. This vector space is the relative
homology group H1(Σ, p−1(∗);Z), where ∗ is a basepoint on the boundary of Σ1

g.

Recall that elements in H1(Σ, p−1(∗);Z) are represented by 1-chains or edges whose
endpoints lie in p−1(∗). In addition, we say that an edge x ∈ H1(Σ, p−1(∗);Z) is
trivial iff it forms a boundary: x = ∂y for some y ∈ H2(Σ;Z).

To realize this action on H1(Σ, p−1(∗);Z) as the representation

r1 : I(Σ1
g)→ GL2g(Z[H]),

we need a correspondence between automorphisms of the relative homology group
and automorphisms of the free Z[H]-module of rank 2g: Z[H]2g.7 We claim that
a bijective correspondence exists. This correspondence is rigorously detailed by
Church and Pixton in [1]. We briefly outline their exposition, before proceeding
with Suzuki’s interpretation.

Loosely speaking, the bijection maps any automorphism of H1(Σ, p−1(∗);Z) to
its action on an unnatural Z[H]-module basis for the relative homology group. This
basis consists of the lifts of an unnatural choice of generators for the fundamental
group of Σ1

g. Thus, the action is expressed by a matrix whose 2g columns correspond
to the images of these lifts under the automorphism.

More precisely: Let {βi} be the generating set for π1(Σ1
g, ∗) that is depicted in

Figure 13. Choose a lift ∗ ∈ p−1(∗) of the basepoint. Note that each βi lifts uniquely
to an edge βi ⊂ Σ that begins at the point ∗ and ends at a different point in p−1(∗).
Thus, each βi defines a nontrival cycle in H1(Σ, p−1(∗);Z). In particular, these lifts
constitute the unnatural Z[H]-module basis described above. Every automorphism
F : H1(Σ, p−1(∗);Z)→ H1(Σ, p−1(∗);Z) determines an invertible matrix whose ith

column corresponds to F (βi).

10.1. Suzuki’s Interpretation. Let f : Σ1
g → Σ1

g be a Torelli class. Choose a

basepoint ∗ ∈ ∂Σ1
g and a corresponding lift ∗ ∈ p−1(∗). Recall that f lifts to a

homeomorphism f : Σ → Σ iff fp = pf . This lift is unique if we require that it
fixes ∗.

For Suzuki’s interpretation, we use an equivalent lifting criterion for homeo-
morphisms. The homeomorphism f lifts to a homeomorphism f : Σ → Σ iff
f∗p∗(π1(Σ,−)) = p∗(π1(Σ,−)). Conveniently, this lifting criterion is automatic.

7Note that this treatment of Z[H] is different from that in previous sections. In Section 7, we
introduced it as the free Z-module with basis H. In this section, Z[H] is a module over itself.
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Since the commutator subgroup of π1(Σ1
g,−) is characteristic, every homeomor-

phism f lifts. As in the first lifting criterion, we define f to be the unique lift of f
that fixes ∗.

The lifted homeomorphism induces an automorphism of H1(Σ, p−1(∗);Z):

f ] : H1(Σ, p−1(∗);Z)→ H1(Σ, p−1(∗);Z),

which we take to be an automorphism of Z[H]2g [1, pg. 180]. Thus, we can identify
f ] with a matrix F in GL2g(Z[H]). According to Suzuki [13], an automorphism
of this matrix is the representation r1(f). The homomorphism r1 maps f to the

matrix F t, where t is the transpose and ( ) is the anti-automorphism from Definition
7.6.

In this paper, we use a slightly edited version of r1 (as did Church and Pixton
in [1]). We define r1(f) to simply be F . This simplification does not affect the
validity of our final result, but it allows us to treat r1 as the action of Torelli classes
on H1(Σ, p−1(∗);Z).

10.2. An Intermediate Abelian Shortcut. The universal abelian covering space
is “universal” in the following sense. It covers every abelian covering of Σ1

g. Put
precisely,

Theorem 10.3. Let p̃ : Σ̃→ Σ1
g be an abelian covering space. Fix three basepoints

∗ ∈ Σ1
g, ∗̃ ∈ p̃−1(∗), and ∗ ∈ p−1(∗). Then, there is a unique abelian covering

q : Σ→ Σ̃ such that p = p̃q and q(∗) = ∗̃.
With this universal property, we have an intermediate abelian shortcut to prove

our main result. To prove Theorem 12.5, it is enough to prove that the distinguished
family of commutators does not act by the identity on the first homology of an
intermediate abelian covering space.

11. Covering Modulo Two

Our goal for this section is to construct and study the intermediate abelian
covering space that will be key to the proof of Theorem 12.5.

11.1. Construction. Let Σ̃ be a compact, oriented surface of genus 2g − 1 with
two boundary components. When g = 3, we depict it as in Figure 16. However,

Figure 16 can be realized as a subsurface of Σ̃ for higher g.

Figure 16. Σ̃ when g = 3
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The surface Σ̃ has order two rotational symmetry. The symmetry is generated
by a rotational angle of π about the axis through the central hole that does not

intersect the surface. Thus, the cyclic group Z2 acts on Σ̃ by the aforementioned
rotation. This action is free and properly discontinuous.

Definition 11.1. An action of a group G on a topological space X is free and
properly discontinuous iff each x ∈ X has a neighborhood U such that the
images g(U) for varying g ∈ G are disjoint.

Free and properly discontinuous group actions on topological spaces give rise to
normal covering spaces. These covering spaces are the quotients of the actions.

Thus, the group action of Z2 on Σ̃ gives rise to a normal covering space p̃ : Σ̃ →
Σ̃/Z2. Note that p̃ is abelian because its deck transformation group is precisely Z2.

It remains to prove that the quotient space Σ̃/Z2 is homeomorphic to Σ1
g.

We form the quotient by first cutting along the bounding pair in Σ̃ whose asso-
ciated curves intersect the central hole and are related by the pertinent π-rotation.
When g = 3, this pair is {γ̃0, γ̃1} in Figure 16. Cutting produces two disconnected
subsurfaces, each of genus g−1 with three boundary components. These subsurfaces
are the closures of the sheets of the covering map p̃. Not only are these subsurfaces
(or the closures of the sheets) related by the deck transformation, but they each
have two boundary components that are related in this way as well. Thus, if we
glue together the distinguished boundary components in one of the subsurfaces,

then from this subsurface, we obtain the quotient space Σ̃/Z2. In particular, we
recover a surface of genus g with one boundary component.

11.2. Lifting Modulo Two. The following proposition characterizes any simple
closed curve that lifts to the intermediate abelian covering space.

Proposition 11.2. Let α : S1 → Σ1
g be a simple closed curve. Let {γ̃0, γ̃1} be the

bounding pair in Σ̃ defined in the previous section. Then, α lifts to a simple closed

curve α̃ : S1 → Σ̃ iff î(α, γ) ≡ 0 mod 2, where γ = p̃(γ̃i).

We have modified the lifting criterion in Proposition 11.2 from Ghaswala and
Winarski’s lifting criterion in [5], Lemma 3.4. The following results are even moti-
vated by their exposition.

To prove the first direction of our lifting criterion, we use a combinatorial con-

struction. We have illustrated this construction on the subsurface of Σ̃ that is
depicted in Figure 16.

Lemma 11.3. Consider the following, weighted digraph G that is drawn on the

subsurface of Σ̃ described above.

Figure 17. Weighted digraph on Σ̃



MORE ON THE MAGNUS REPRESENTATION OF THE TORELLI GROUP 21

Let F be a finite walk in G. Let w(F ) be the sum of the weights of the edges
traversed in the walk. Then, F begins and ends at the same vertex iff w(F ) ≡
0 mod 2.

Proof. Count. �

For the backwards direction, we need a special group homomorphism. This
mapping’s existence and uniqueness is ensured by the following result.

Lemma 11.4. Let a : π1(Σ1
g,−) → H1(Σ1

g;Z) be the abelianization of π1(Σ1
g,−).

Let ϕ : π1(Σ1
g,−) → Z2 be the quotient by the subgroup p̃∗(π1(Σ̃,−)). Up to a

change in basepoint, there is a unique group homomorphism ϕa : H1(Σ1
g;Z) → Z2

satisfying ϕ = ϕaa.

Proof. In the background of the above lemma is the universal property of quotient
maps. We have applied this property before in Propositions 3.2, 3.3, and 6.4. We
choose to name it now only because its present application is more subtle.

For the universal property to guarantee the existence and uniqueness of ϕa, the
kernel of a must be a subgroup of the kernel of ϕ. However, this is not too difficult
to prove (provided we recall some facts from algebraic topology). In particular,
let p : Σ → Σ1

g be the universal abelian covering space from Section 10, which

corresponds to the commutator subgroup of π1(Σ1
g,−).

By definition, the image of p is equal to the kernel of a. Since covering maps
induce inclusions on fundamental groups and since p is universal [10.3], we obtain:

ker a = p∗(π1(Σ,−)) ⊂ p̃∗(π1(Σ̃,−)) = kerϕ.

Thus, ϕa exists and is unique. �

We can give ϕa a hands-on description. It maps all homology classes of curves

that lift to Σ̃ to zero. The kernel of ϕa is a preliminary lifting criterion for curves.

Lemma 11.5. Let α : S1 → Σ1
g be a simple closed curve. Then, α lifts to Σ̃ iff

[α] ∈ kerϕa.

Proof. Fix a basepoint ∗ ∈ Σ1
g and a corresponding lift ∗̃ ∈ p̃−1(∗) in Lemma 11.4.

Let α : S1 → Σ1
g be a simple closed curve based at ∗. Then, the homomorphism ϕa is

uniquely defined by ϕa([α]) := ϕ(α). It follows that [α] ∈ kerϕa iff α ∈ p̃∗(π1(Σ̃, ∗̃)).
The preceding biconditional is secretly Lemma 11.5. By a well-known lifting

criterion, α lifts to Σ̃ iff α ∈ p̃∗(π1(Σ̃, ∗̃)). �

Equipped with the previous lemmas, homomorphisms, and pictures, we can fi-
nally prove Proposition 11.2.

Proof of Proposition 11.2. ( =⇒ ) Fix a basepoint ∗ ∈ Σ1
g and a corresponding lift

∗̃ ∈ p̃−1(∗). Let α : S1 → Σ1
g be a simple closed curve based at ∗ that lifts.

Because p̃ is a two-sheeted covering space, p̃−1(α) consists of two, disjoint simple

closed curves: α̃0 : S1 → Σ̃ and α̃1 : S1 → Σ̃. Let α̃0 be the curve beginning at ∗̃.
Up to isotopy, we can assume that the multicurves α̃ = α̃0 ∪ α̃1 and γ̃ = γ̃0 ∪ γ̃1
are transverse.

We consider the action of Z2 on the intersection of these multicurves: α̃∩ γ̃. This
action is transitive. It transposes the points in α̃0 ∩ γ̃ with the points in α̃1 ∩ γ̃,
even preserving their signs of intersection. Thus, all components of α̃ have the same
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algebraic and geometric intersections with γ̃. What is more: î(α̃i, γ̃) = î(α, γ) for
any i ∈ {0, 1}.

Let S̃0 and S̃1 be the two sheets of p̃ such that S̃0 contains the basepoint ∗̃. If G
is the weighted diagraph from Lemma 11.3, then we let its vertices Si correspond

to the sheets S̃i.
In this suggestively decorated diagraph, we construct a finite walk Fi. The walk

corresponds to the path traversed by α̃i in Σ̃. Naturally, it begins at the point Si.
If α̃i ∩ γ̃ is empty, then the walk is simply Si.

If α̃i ∩ γ̃ 6= ∅, then the recipe for Fi is as follows. Parametrize α̃i : [0, 1] → Σ̃.
Because |α̃ ∩ γ̃| < ∞ by compactness, there is a finite set {tj} ⊂ [0, 1] satisfying
α̃i(tj) ∈ α̃i∩ γ̃ and tj < tj+1. Choose a value ε > 0 such that α̃i(tj− ε, tj + ε)∩ γ̃ =
α̃i(tj) for all j. Then, for each tj in the order of increasing j,

(1) add the vertex that corresponds to the subsurface containing α̃i(tj + ε) to
Fi; and

(2) add the edge that connects the vertex corresponding to the subsurface con-
taining α̃i(tj − ε) to the vertex corresponding to the subsurface containing
α̃i(tj + ε), whose weight equals the sign of intersection assigned to α̃i(tj).

This process yields a finite walk beginning and ending at Si.
By Lemma 11.3, w(Fi) ≡ 0 mod 2. Note that w(Fi) sums the signed intersections

between α̃i and γ̃. So by the previous discussion,

î(α, γ) ≡ î(α̃i, γ̃) ≡ 0 mod 2.

( ⇐= ) Let π2 : Z → Z2 be a surjective group homomorphism. Define the

homomorphism φ = π2 ◦ î(−, γ) : H1(Σ1
g;Z) → Z2. Note that φ is also surjective.

There is a curve γ′ such that i(γ′, γ) = 1.
The kernel of φ has the following description:

kerφ := {[α] ∈ H1(Σ1
g;Z) : î(α, γ) ≡ 0 mod 2}.

The forward direction implies that this kernel contains the kernel of ϕa, which has
a prima facie stronger description:

kerϕa := {[α] ∈ H1(Σ1
g;Z) : α lifts}.

However, both of these kernels are index two subgroups! Thus, their descriptions
are equivalent:

{[α] ∈ H1(Σ1
g;Z) : α lifts} = {[α] ∈ H1(Σ1

g;Z) : î(α, γ) ≡ 0 mod 2}.

�

11.3. Twisting Modulo Two. In addition to the lifting criterion for curves, we
have a lifting criterion for Dehn twists. Mercifully, its proof is succinct.

Corollary 11.6. Let {α, γ} be constructed as above. If î(α, γ) ≡ 0 mod 2, then

Tα : Σ1
g → Σ1

g lifts uniquely to a homeomorphism of Σ̃ that fixes p̃−1(α).

Proof. Our suspect for the lift of Tα is T̃α = Tα̃1
Tα̃0

: Σ̃ → Σ̃, where α̃0 and α̃1

form the disjoint components of p̃−1(α). Since these components are simple closed

curves by Proposition 11.2, T̃α is well-defined. It fixes p̃−1(α) by definition [4.1].
While Tα rotates a closed regular neighborhood of α, its conjectured lift rotates

closed regular neighborhoods of α̃0 and α̃1. Since p̃ maps the (resp. rotated) α̃0-
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and α̃1-annuli to the (resp. rotated) α-annulus, we have that p̃T̃α = Tαp̃. In sum:
Tα lifts. �

12. The General Case

The final section is split into five claims: four lemmas and one theorem. The
first three lemmas build to the fourth, which is the intermediate abelian shortcut
alluded to in Subsection 10.2. Once we have shown this intermediate case, we can
prove the fifth claim and only theorem of this chapter: Theorem 12.5.

Lemma 12.1. There is a simple closed curve γ : S1 → Σbg so that i(α, γ) = 1 and
i(β, γ) = 0.

Proof. Let Σ1
g/(α∪ β) be the path-connected cut surface equipped with a quotient

g : Σ1
g/(α∪β)→ Σ1

g [3.1]. Choose a point x ∈ α−β and two distinct preimages x0 6=
x1 ∈ g−1(x). By path-connectedness, there is an embedding γ̂ : [0, 1]→ Σ1

g/(α∪β)

such that γ̂(0) = x0 and γ̂(1) = x1. We can also assume that γ̂ ∩ g−1(α ∪ β) =
{x0, x1} by applying an isotopy. Thus, g(γ̂) : [0, 1] → Σ1

g is a closed curve, which

intersects α only in x but is disjoint from β. Since we can identify S1 with the
quotient [0, 1]/0∼1, there is a simple closed curve γ : S1 → Σ1

g with the same image
as g(γ̂). �

In what follows, we choose a representative for {α, γ}. We depict this choice in
Figure 18. Just like Figure 14, we can realize 18 as a subsurface of Σ1

g.
This choice of representative is not really a “choice” in the sense that it is re-

strictive. In fact, if the theorem holds for one representative of {α, γ}, then it holds
for all representatives. Though these statements are non-obvious (and likely sound
imprecise), we will unpack them in greater detail only at the end.

Figure 18. Representative for {α, γ}

Lemma 12.2. The union of Tα(β) and γ does not separate Σ1
g.

Proof. It is enough to prove that the cut surface Σ1
g/(β∪T−1α (γ)) is path-connected.

Note that the pairs {Tα(β), γ} and {β, T−1α (γ)} are related by a homeomorphism
of Σ1

g.

Consider the second cut surface Σ1
g/(α∪β∪γ). This surface is equipped with two

quotients. The first is given by Definition 3.1. It is the quotient h : Σ1
g/(α∪β∪γ)→

Σ1
g that undoes the cuts along α, β, and γ.
The second quotient is less canonical. It arises from the observation that we can

cut Σ1
g/(β ∪ T−1α (γ)) into a surface that is homeomorphic to Σ1

g/(α∪ β ∪ γ). Thus,

there is a second quotient k : Σ1
g/(α∪β∪γ)→ Σ1

g/(β∪T−1α (γ)) that glues together
two disconnected subsets taken from possibly distinct boundary components of
Σ1
g − (α∪ β ∪ γ). We depict k up to a homeomorphism of the domain or codomain

in Figure 19.
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Figure 19. Gluing Σ1
g/(α ∪ β ∪ γ) into Σ1

g/(β ∪ T−1α (γ))

Let y0 and y1 be distinct points in Σ1
g/(β ∪ T−1α (γ)). With the second quotient,

we show that a path exists between y0 and y1. Choose representatives y′0 ∈ k−1(y0)
and y′1 ∈ k−1(y1). Let p : [0, 1] → Σ1

g/(α ∪ β ∪ γ) be a function with minimal
discontinuities such that p(0) = y′0 and p(1) = y′1 and whose discontinuities (if they
exist) occur on the boundary of Σ1

g/(α ∪ β ∪ γ). In fact, we assume that these
discontinuities exist. If p were continuous, then kp is already a path between y0
and y1.

Let Dp be the set of discontinuous points of p. By minimality, Dp consists of
a finite number of jump discontinuities. In addition, p(Dp) is a subset of h−1(γ).
Since Σ1

g/(α∪β) is path-connected, the discontinuities only occur where Σ1
g/(α∪β)

was cut along γ.
Because k is continuous, the set of discontinuities Dkp of kp are a subset of Dp.

By the previous discussion, kp(Dkp) is a subset of k(h−1(γ)). However, k(h−1(γ))
is path-connected. Up to a homeomorphism of Σ1

g/(β ∪ T−1α (γ)), it is the red arc
in Figure 20. Thus, there is a way to remove each discontinuity of kp (if it exists)
via concatenation of paths. There is a path between y0 and y1. �

Figure 20. The set k(h−1(γ)) up to a homeomorphism of Σ1
g/(β∪

T−1α (γ))

Our choice of γ is suspect. It is isotopic to p̃(γ̃i), where γ̃i is a curve in the

bounding pair depicted in Figure 16. Moreover, î(β, γ) = 0. Thus, β lifts to Σ̃ by
our lifting criterion in Section 11 [11.2].

Even Tα(β) lifts. Because α and β have trivial algebraic intersection, Tα? acts
by the identity on [β]. Accordingly, it acts trivially in the β-coordinate of algebraic

intersection: î(β, γ) = î(Tα(β), γ) = 0 [9.1].
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To this end, we consider the lifts of β and Tα(β). Choose a basepoint ∗ on the
boundary of Σ1

g and a corresponding lift ∗̃ ∈ p̃−1(∗). Up to isotopy, we can assume

that β and Tα(β) are based at ∗. In this way, we define the lifts p̃−1(β) = {β̃0, β̃1}
and p̃−1(Tα(β)) = {η̃0, η̃1} such that β̃0 and η̃0 are based at ∗̃.

Lemma 12.3. Let {β̃0, β̃1, η̃0, η̃1} be constructed as above. Then, ∀i, j : [β̃i] 6= [η̃j ].

Proof. Fix any i, j ∈ {0, 1}. To prove that [β̃i] 6= [η̃j ], it is sufficient to find a curve
that shares a nontrivial algebraic intersection with η̃j and a trivial intersection with

β̃i. Note that the algebraic intersection is a well-defined mapping on the product
of first homology groups [9.1].

To find this curve, we consider a crucial difference between β and Tα(β). Though
β is disjoint from γ, the opposite is true for Tα(β). Via curve surgery, we compute
that Tα(β) ≥ i(α, β) [5.2]. From this crucial difference, we can make a germane and

crucial observation about the lifts of β and Tα(β). While β̃i is properly contained
in the sheet of p̃ that contains its basepoint, η̃j is not properly contained in any
sheet.

We can say more about η̃j . Let S̃0 and S̃1 be the two sheets of p̃ such that ∗̃ ∈ S̃0.

Then, the subsurface S̃k− η̃j is connected for any k ∈ {0, 1}. This is because S̃k− η̃j
is homeomorphic to its image p̃(S̃k − η̃j) and the image is connected by Lemma
12.2.

Now fix k ∈ {0, 1} such that k 6= i. Since S̃k − η̃j is connected, there is a curve

that is properly contained in S̃k and intersects η̃j in one point. (See the proof of

Lemma 12.1 for more details.) Because β̃i is disjoint from S̃k, the proof of the
lemma is complete. �

Since β and Tα(β) lift to Σ̃, TTα(β)T
−1
β lifts to a homeomorphism of Σ̃. Let

T̃ = Tη̃1Tη̃0T
−1
β̃1
T−1
β̃0

: Σ̃→ Σ̃.

be the unique lift of TTα(β)T
−1
β that fixes ∗̃ [11.6]. This homeomorphism twists

regular neighborhoods of the lifts of β, before twisting regular neighborhoods of
the lifts of Tα(β).

Secretly, T̃ is also the lift of [Tα, Tβ ]. Note that the commutator and TTα(β)T
−1
β

define the same homeomorphism on Σ1
g [4.3].

Lemma 12.4. The induced isomorphism T̃? : H1(Σ̃;Z) → H1(Σ̃;Z) is not the
identity.

Proof. By construction, the pair {β, γ} is disjoint and non-homologous. So not only
is β ∪ γ a representative for the class [β] + [γ], but it is also not null-homologous.
It is also non-separating [9.3].

In the same vein as Lemma 12.1, there is a simple closed curve ζ based at ∗ such

that i(β, ζ) = î(β, ζ) = 1 and i(γ, ζ) = 0. Hence, ζ lifts to Σ̃ [11.2]. As before, we

define the components in the preimage p̃−1(ζ) = {ζ̃0, ζ̃1} such that ζ̃0 is based ∗̃.
Now set p̃−1(ζ) = ζ̃ and p̃−1(Tα(β)) = η̃. By the action of the deck group, these

preimages satisfy i(β̃i, η̃) = 0, i(β̃i, ζ̃) = 1, and i(ζ̃i, η̃) = 1 for any i ∈ {0, 1}. We

can also assume that î(β̃0, ζ̃0) = 1. (If not, then we switch ζ̃0 with ζ̃1 in the following
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discussion.) Under this construction, we claim that the induced homomorphism T̃?
does not act by the identity on the class [ζ̃0].

Consider the action of T̃? on [ζ̃0], which can be expressed as the action of Tη̃1?
on (Tη̃0T

−1
β̃0

)?(ζ̃0).

T̃?(ζ̃0) = (Tη̃0T
−1
β̃0

)?(ζ̃0) + î(η̃1, Tη̃0T
−1
β̃0

(ζ̃0))[η̃1]. [9.2]

Because î is bilinear, we can simplify further:

= [ζ̃0]− [β̃0] + (̂i(η̃0, ζ̃0)− î(η̃0, β̃0))[η̃0] + (̂i(η̃1, ζ̃0)− î(η̃1, β̃0))[η̃1]. [9.1]

Finally, we set î(η̃0, β̃0) = m and î(η̃0, ζ̃0) = n. This gives the more readable
expression

T̃?(ζ̃0) = [ζ̃0]− [β̃0] + (n−m)[η̃0] + (1− n+m)[η̃1].

It remains to prove that [β̃0] 6= (n − m)[η̃0] + (1 − n + m)[η̃1], which we do by
contradiction.

If [β̃0] = (n−m)[η̃0] + (1− n+m)[η̃1], then

î(β̃0, ζ̃0) = î((n−m)[η̃0] + (1− n+m)[η̃1], ζ̃0) [9.1]

= n(n−m) + (1− n)(1− n+m) [9.1]

= 1.

The above expression has integer solutions iff m = 0 and n = 0 or 1, that is,

iff [β̃0] = [η̃0] or [η̃1]. However, this contradicts Lemma 12.3. So our original
assumption is false, and the fourth lemma is proved. �

For the fifth and final claim, we apply the universal property of abelian covering
spaces. After fixing the basepoint ∗ ∈ p−1(∗), we assert that there is a unique

abelian covering q : Σ→ Σ̃ satisfying p = p̃q and q(∗) = ∗̃ [10.3].
The universal property gives rise to the following proposition. If T : Σ → Σ is

the unique lift of [Tα, Tβ ] that fixes ∗ ∈ p−1(∗), then it is also the unique lift of

T̃ that fixes ∗ ∈ q−1(∗̃). (See Subsection 10.1 for more details.) In other words,
we have a commutative diagram on covering spaces that expresses the preceding
proposition. However, we consider the diagram that the first diagram induces on
relative homology groups.

H1(Σ, p−1(∗);Z) H1(Σ, p−1(∗);Z)

H1(Σ̃, p̃−1(∗);Z) H1(Σ̃, p̃−1(∗);Z)

H1(Σ1
g, ∗;Z) H1(Σ1

g, ∗;Z)

T ]

q] q]

T̃]

p̃] p̃]

[Tα,Tβ ]]

In the depicted diagram, the subscript ] denotes the natural action on relative
homology. We will use this notation for all of the subsequent mappings, including
homology cycles.
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Theorem 12.5. Let [Tα, Tβ ] : Σ1
g → Σ1

g be a commutator of a simply intersecting

pair such that g ≥ 3, i(α, β) > 0, and α∪ β does not separate Σ1
g. Then, [Tα, Tβ ] /∈

ker r1.

Proof. Let ζ0 ⊂ Σ be the unique lift of ζ beginning at the basepoint ∗. Then by

uniqueness, q](ζ0) = [ζ̃0]]. By commutativity, q]T ](ζ0) = T̃](ζ̃0). We claim that

these images are not equal: [ζ̃0]] 6= T̃](ζ̃0).

As we stated in Section 10, an edge x ∈ H1(Σ̃, p̃−1(∗);Z) is trivial iff there exists

a y ∈ H2(Σ̃;Z) such that x = ∂y. In this way, the difference [ζ̃0]] − T̃](ζ̃0) ∈
H1(Σ̃, p̃−1(∗);Z) must be nontrivial. By Lemma 12.4, there is no y ∈ H2(Σ̃;Z)

such that [ζ̃0]] − T̃](ζ̃0) = ∂y.

Since T̃] does not act by the identity on [ζ̃0]], the analogous statement is true

for T ] and [ζ0]]. Because q] is well defined, the preimages [ζ0]] and T ](ζ0) are not
equal. In fact, r1([Tα, Tβ ]) is not the identity either! By our definition of r1 [10.1],

T ] is the identity iff r1([Tα, Tβ ]) is too. �

Remark 12.6. Though we chose {α, γ} to be the pair of curves pictured in Figure
18, this choice does not invalidate the previous lemmas. By Change of Coordinates,
any pair of curves {α, γ} with i(α, γ) = 1 is unique up to a homeomorphism of Σ1

g

[3.3]. Thus, if we fixed a different pair {α′, γ′} with the same intersection pattern,
then there is a homeomorphism f : Σ1

g → Σ1
g satisfying {α′, γ′} = f({α, γ}) and

[Tα′ , Tβ ] = f [Tα, Tβ ]f−1 [4.3]. Moreover:

[Tα′ , Tβ ]] = (f [Tα, Tβ ]f−1)]

= (f [Tα, Tβ ]f
−1

)]

= f ][Tα, Tβ ]]f]
−1

6= id.
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