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Abstract. The study focus on the income stability of pooled annuity fund mem-

bers. We derive a mathematical expression to find the number of people who can

receive lifelong stable income with a certain probability in a given pooled an-

nuity fund. To solely study the idiosyncratic risk, we fixed the investment return

and ignore the systematic risk. In the homogeneous case, each fund members

are identical to each other, the trade-off between group size and income stability

is studied. Then, we extend the method to the non-homogeneous case. In the

non-homogeneous case, fund members are differ in initial account values. And

the focus is on quantifying the effect of the composition of fund members with

different initial account values on income stability.

1. Background

There has been a transition from defined benefit pension plan(DB) to defined contribution

pension plan(DC) in the US pension system under the increasing labor mobility and reg-

ulation changes. Under the DC plan, the risks are transferred to sponsors to employees

since they are no longer guarantee a fixed, lifelong retirement income.

Defined benefit pension plan(DB) becomes less popular under the increasing la-

bor mobility. The number of mobile workers in the US has been increasing in the past

decades. DB plan is less attractive to mobile workers. On the one hand, the income calcu-

lation of DB is partially based on the length of service, which means long-tenured workers

can benefit more than mobile workers. On the other hand, DB plans are not portable be-

tween different sponsors, which can cause accrual loses to mobile workers when they are

changing employers.

Regulation changes triggered the transition from DB to DC. The U.S. Employee

Retirement Income Security Act of 1974 (ERISA) issued a series of regulatory restric-

tions on firms to protect workers’ benefits and reduce discrimination. The new regulation
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increases the administration cost and limits firms’ flexibility of allocating benefits, which

reduced their incentive to sponsor such traditional pension. The shift from DB to DC

happened over decades after ERISA in the private sector. Through the transition, the por-

tion of labors in the private industry covered by DC plan experienced a rapid increase

and by 2012, exceeded 40%(Bureau of Labor Statistics, 2012, Table 2). Moreover, since

the financial crisis in 2008, public DB fund liabilities start to exceed fund assets, which

brought the pension reform into the public sector.

The shift from DB to DC transfers the risk from sponsors to households. In the DB

plan, the payout to employees after retirement is predetermined with a formula including

years of service and historical salary. Therefore, the sponsors bear the risk since they

guarantee employees a fixed retirement income. However, for DC plan, the sponsors are

no longer obligated to pay a fixed retirement income. The sponsors are only responsible

to make regular deposits to the employees’ retirement account.This addresses the risk to

employees since they will decide how to invest the money on their retirement accounts to

ensure financial security after retirement.

2. Introduction

For risk-averse investors who want to ensure a stable lifetime income especially after

retirement, tontine is an attractive option. Tontine is an investment plan that provides a

solution to longevity risk(the risk form uncertainty to future life time). In tontine plan,

participants submit a lump-sum payment and receive a periodic payout afterward. And

the dead participants’ payout entitlements are distributed to the alive members, which

allows members to pool the longevity risk.

Longevity risk is an important topic in the study of tontine, it affects the income

stability of participants. Longevity risk management is widely discussed in the academic

world.

Longevity risk pooling is discussed in Piggott et.al(2005)’s study. The article in-

troduces group-self annuitization(GSA) plan where participants bear systematic longevity

risk(the risk from choosing the wrong mortality model) but share idiosyncratic longevity

risk(the risk that a finite number of observations cannot recapture the continuous ideal

mortality distribution). The study suggests that the variation between mortality observa-

tions and mortality expectations results in payout fluctuations, which can be mitigated by

sharing idiosyncratic risk among fund members.

Extending Piggott et.al’s (2013) study on GSA, Qiao, and Sherris investigate

the systematic longevity risk management. The study shows the threaten of systematic
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risk(risk of using the wrong mortality model and the uncertainty of future investment

return) to the effectiveness of idiosyncratic risk pooling. Moreover, the study suggests

that by adopting a mortality model that allows mortality rates to evolve randomly with

expected changes, the negative effect of systematic risk can be mitigated.

Bernhardt and Donnelly (2020) further investigate on the idiosyncratic risk pool-

ing. In their study, a mathematical expression that holds for any mortality model is derived

to evaluate the income stability of a homogeneous pooled annuity group. The study gen-

erates numerical results on income stability with different group sizes. By quantifying the

effect of group sizes on income stability, the study suggests how to effectively diversify

idiosyncratic risk by adjusting group size.

In this study, we adopt the same assumptions and methods in Bernhardt and Don-

nelly’s article but study the heterogeneous group. To isolate the idiosyncratic risk, we

ignore the systematic risk and fix the investment returns. We derive a theoretical result

on calculating the number of people receiving lifelong stable income in a pooled annu-

ity group. Then, we conduct simulation on samples to obtain income streams of different

groups. In our analysis on numerical results, we investigate strategies on arranging people

with different account values in a group so that obtaining desired income stability.

3. Overview on Homogeneous-Case

Bernhardt and Donnelly (2020) studied on the income stability of homogeneous pooled

annuity fund group. The study derives a way of quantifying income stability, that is, find

the number of people who can receive life long stable income with a certain probability

in a given homogeneous pooled annuity group. In the results, the study measures how

changing 16 group size affects the income stability of a given homogeneous pooled an-

nuity group. The study considers a pooled annuity fund where the following assumptions

are made:

• Every member in the pooled annuity fund has the same age.

• Every member joins the pooled annuity fund at the same time.

• No member can leave the pool except through death.

• Each member have the same initial account value.

• The dead members’ money on fund accounts will be distributed to the rest of the

alive member in the next time period after the death time.

3.1. Variable Definitions

• N represents the initial number of members in the pooled annuity fund, where

N ≥ 2.
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• x represents the age of each members when the pooled annuity fund start. That

is, every fund members receive their first income payment at the age x+1, where

x ≥ 0.

• Ti, for i ∈ {1, 2...N}, is random variable representing ith members’ future life

time after age x. T1, T2...TN are independent and identically distributed random

variables and are defined on probability space(Ω,F , P ).

• T(i), for i ∈ {1, 2...N}, is generated from rearranging Ti into an increasing order.

That is, T(1) ≤ T(2) ≤ ... ≤ T(N).

• Lx+t is the Number of alive members at the age of x+t which can be expressed as

following:

Lx+t =
N∑
i=1

1[Ti>t]

where 1 is the indicator function of the set Ti > t

3.2. Survival Probability

3.2.1. Empirical Survival Probability

The empirical survival probability of a member to be alive at the age of x+t conditional

on being alive at the age of x is expressed as:

tp̂x = Lx+t/Lx, t ≥ 0

3.2.2. Assumed True Survival Probability

The real survival probability that assumed to be true of a member to be alive at the age of

x+t conditional on being alive at the age of x of is:

tpx = P [Ti > x+ t|Ti > x]

3.3. Income fluctuation

In the homogeneous case, since the investment return is fixed and systematic longevity

risk is ignored, we can solely investigate on the idiosyncratic longevity risk (the risk

that comes from the difference between the observed empirical survival probability and

assumed true survival probability). In the study, income of each fund member at time t

can be expressed as:

C(t) = C(0)
tpx

tp̂x
, if Lx+t > 0
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Figure 1. Income flow of an 1000 people group

Where C(t) is the income withdrawn at time t, t ≥ 0.This expression reveals that

the income fluctuations are only depend on the ratio of empirical survival probability and

true survival probability. Recall that the systematic longevity risk comes from choosing

the wrong future lifetime distribution which affects the value of tpx here. The idiosyn-

cratic longevity risk is the risk that future lifetime distribution is not observed perfectly.

In the study, the investment return is fixed and the systematic longevity risk is ignored

so that the idiosyncratic longevity risk can be studied in isolation. If the idiosyncratic

longevity risk is perfect diversified, the income would stays the same as the initial in-

come (C(0) = C(t)) for all t ≥ 0. While the study focuses on non-perfect idiosyncratic

longevity risk pooling, that is, the focus is on how close the future income stays to the

initial income C(0).

3.4. Main Theorem of Bernhardt and Donnelly (2020)

The goal of pooled annuity funds is to ensure members a long-term stable income with

a certain large probability. Therefore, the study set (1 − ε)C(0) as the lower income

threshold, (1 + ε2)C(0) as the upper income threshold, where ε1 ∈ (0, 1) and ε2 > 0.

Then, say the income that stays within the thresholds as stable. Thus, the study has the

following expression:

P [ (1 + ε2)C(0) ≥ C(s) ≥ (1− ε1)C(0) for all s ∈ {1, 2, ..., bT(k)c}] ≥ β, (1)

where bT(k)c is the integer part of T(k), the time when k members have dead in the pool.

β is the probability for the statement to hold. Note that s is in the unit of months, it
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represents the time points when payments are made in each month. The reason for using

month as unit of time is to ensure the income in each month stays within the thresholds.

Moreover, introducing T(k) into the formula is to study the number of people,k, who can

receive lifelong stable income. β is the smallest probability that k out of N members in

the group can receive lifelong stable income.

The expression (1) allows us to quantify the income stability by finding the max-

imum of k which is denoted as kC with given ε1, ε2, β. That is, KC is the number of

members in the pool can enjoy a life long stable income. However, calculating KC di-

rectly from expression (1) can be complicated since it requires to choose the distribution

of T and the results vary for different mortality distribution. So instead of directly calcu-

latingKC from (1), the study calculates the lower bound ofKC , using theorem 2.1, which

largely simplifies the simulation process.

Theorem 3.1. Let U(1), U(2), ..., U(N) be the ordered statistics of N independent

and standard uniformly distributed random variables U1, U2, ..., UN . Fix constants ε1 ∈
(0, 1), ε2 > 0 and K ∈ {1, 2, ...N}.

P [ (1 + ε2)C(0) ≥ C(s) ≥ (1− ε1)C(0) for all s ∈ {1, 2, ..., bTkc}] ≥

P [ (1− ε1)
i− 1

N
+ ε1 ≥ U(i) ≥ (1 + ε2)

min{i, N − 1}
N

for all i ∈ {1, 2, ...N}] .

Note the order statistics U(1), U(2), ..., U(N) is generated by ranking U1, U2, ..., UN from

the lowest to highest. That is, U(1) ≤ U(2) ≤ ... ≤ U(N). Same reasoning, T(i) is the order

statistic of increasing order generated from Ti.

3.5. Approximation of KC

Recall that due to the complexity of calculating KC , the study approximate KC to its

lower bound, KU . Based on Theorem 2.1, the KU is the maximum of i. This approxima-

tion largely improves the efficiency of calculation: 1.it is independent from the mortality

distribution Ti 2. It only involves random variable simulation and gets rid of stochastic

process. Monte Carlo Simulation is used to obtainKU , which is because that the probabil-

ity of the expression including U(i) in Theorem 2.1 is challenging to compute. Moreover,

the study also examines the accuracy of the approximation by calculating and compar-

ing KC and KU . The result shows that the approximation is accurate and the accuracy

increases with the value of ε.



7

3.6. Results and Conclusion

The study derive an efficient way of quantifying the income stability of a given homoge-

neous pooled annuity group. That is, calculating the number of people in a pooled annuity

group who can receive life long income with certain probability. By conducting Monte

Carlo simulation on homogeneous pooled annuity group of different size, the study find

out the condition when the fund members can obtain desirable income stability. That is,

when the group size is in thousands, the income stability can be ensured with a desirable

large probability.

Figure 2 gives us an intuitive way of understanding the result. It shows one sample

from the simulations of the income process for 1000 member groups. The blue lines are

the income thresholds within which the income is defined to be stable. The plot shows

that in the 1000 member group, the income stays stable until 725 members died. In the

simulation results, there are 90% of samples maintain stable income until the death of the

725th member.
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Figure 2. Income flow of 1000 member group
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4. Non-homogeneous Case

We assume the participants of pooled annuity fund are composed of two groups of peo-

ple: Group H, where members hold the same relatively high initial account value, and

Group L, where members hold the same relatively low initial account value. Extending

the method in the homogeneous case, we derive an expression to calculate the number

of members in each group who can receive the life long stable income in a given non-

homogeneous group. Therefore we can quantify how changing the ratio of the size of two

groups, or the ratio of initial account values of two groups affect the income stability in

the pooled annuity fund. We study the group where we make the following assumptions:

4.1. The Operation of the Pooled Annuity Fund

We study pooled annuity fund that follows the assumptions below:

• There are more than one participant in Group L and in Group H.

• Every member in the pooled annuity fund is of the same age.

• Every member join the pooled annuity fund at the same time at age x.

• No member can leave the pool except for death.

• Each member in Group L and in Group H have the same initial account value.

• The dead members’ money on fund accounts will be distributed to the rest of the

alive member in the next time period after the death time.

4.1.1. Future Life time Random Variables

Recall that there are N fund members initially, each fund member join the at age x,

or equivalently at time 0. Ti, for i ∈ {1, 2...N}, is random variable representing ith

members’ future life time after age x > 0. T1, T2...TN are independent and identi-

cally distributed random variables an are defined on probability space(Ω,F , P ). T(i),

for i ∈ {1, 2...N}, is order statistics of increasing order. That is, T(1) ≤ T(2) ≤ ... ≤ T(N).

The number of alive members in Group L at age x+t is:

Llx+t =
N∑
i=1

1[Ti>t| ith member belongs to Group L]

where 1 is the indicator function of the set Ti > t

The number of alive members in Group H at age x+t is:

Lhx+t =
N∑
i=1

1[Ti>t| ith member belongs to Group H]
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where 1 is the indicator function of the set Ti > t

The number of alive members on the pooled annuity group at age x+t is:

Lx+t = Llx+t + Lhx+t

4.1.2. Income Calculation

In the non-homogeneous pooled annuity group, each fund member in Group H hold the

same account value, W h(t) ≥ 0, at time t. And each fund member in Group L hold the

same account value, W l(t) ≥ 0, at time t.

The fund money is invested and yield investment returns with investment rate R,

R > −1.

Each alive fund member withdraw income from their fund account periodically.

And the value of income is the same as the payout of a fair life annuity if purchases with

the current fund value. There for the income at time t ∈ {1, 2, ...} is expressed as:

C l(t) = W l(t)/äx+t (2)

Ch(t) = W h(t)/äx+t (3)

where

äx+t = 1 +
∞∑
j=1

(1 +R)−jjPx+t

4.1.3. Adjusted Survival Probability

Let constant a ≥ 1 be the ratio between initial account values of Group H and Group L:

W h(0) = a ∗W l(0)

And given (10), (11), it is easy to prove by induction that:

W h(t) = a ∗W l(t), t > 0 (4)

Since the two subgroups, Group L and Group G, are two homogeneous groups, we

follow the definition of empirical survival probability in the homogeneous case to define

the empirical survival probability to survive at age x + t + s conditional on being alive at

age x + t given the member belongs to Group L as:
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sp̂
l
x+t = Llx+t+s/L

l
x+t (5)

given the member belongs to Group L as:

sp̂
h
x+t = Lhx+t+s/L

h
x+t (6)

As the account value of fund members in Group H is always a times of the account

value of members in group L and the fund group is homogeneous when ignoring the

difference in group members’ account value. We consider each member in Group H as

exactly a copies of member in Group L. Therefore, we express the empirical survival

probability to survive at age x + t + s conditional on being alive at age x + t, for s, t > 0,

is:

sp̂x+t = (Llx+t+s + a ∗ Lhx+t+s)/(Llx+t + a ∗ Lhx+t) (7)

We can also write sp̂x+t as the weighted average of the empirical survival proba-

bility of the two homogeneous subgroups, Group H and Group L.

sp̂x+t = (Llx+t+s + a ∗ Lhx+t+s)/(Llx+t + a ∗ Lhx+t)

=
Llx+t

Llx+t + a ∗ Lhx+t
∗
Llx+t+s
Llx+t

+
a ∗ Lhx+t

Llx+t + a ∗ Lhx+t
∗
Lhx+t+s
Lhx+t

=
Llx+t

Llx+t + a ∗ Lhx+t
∗s p̂lx+t +

a ∗ Lhx+t
Llx+t + a ∗ Lhx+t

∗s p̂hx+t (8)

The real survival probability that assumed to be true of a member to be alive at the

age of x+t+s conditional on being alive at the age of x+t of is:

spx+t = P [Ti > x+ t+ s|Ti > x+ t]

4.1.4. The Longevity Credit Calculation

In the pooled annuity fund, the longevity credit is the money that alive members received

from the dead members. Specifically, the account value of member who dead during time

(t, t+1] will be distributed to the account of survival fund member at time t+1. Recall that

we consider the account of Group H member as a copies of Group L member’s account.

Therefore, we express the longevity credit to Group L member from time t to time t+1 as:

M l(t+ 1) =
(W l(t)− C l(t))(1 +R)(Llx+t − Llx+t+1 +m ∗ Lhx+t −m ∗ Lhx+t+1)

Llx+t+1 +m ∗ Lhx+t+1

. (9)

Where Llx+t+1 + m ∗ Lhx+t+1 > 0. In the equation (7), (W l(t) − C l(t))(1 + R)

represents the account value of dead member in Group L at time t+1, (Llx+t − Llx+t+1 +
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m ∗ Lhx+t −m ∗ Lhx+t+1) represents the number of copies of Group L member converted

from all dead members. Then the sum of dead members’ account value at time t+1 is

evenly distributed to each copy of Group L account. If Llx+t+1 + m ∗ Lhx+t+1 = 0, the

pooled annuity fund terminates.

Since we find that the longevity credit to Group H members is a times ofM l(t+1):

Mh(t+ 1) = a ∗M l(t+ 1) (10)

After the payment of longevity credit at time t+1, the account value of fund mem-

bers in Group L at time t+1 becomes:

W l(t+ 1) = (W l(t)− C l(t))(1 +R) +M l(t+ 1), T > 0 (11)

4.2. Income Fluctuation

By manipulating the formulas we derived, we can find the factor that cause the income

fluctuations. First, substitute wl(t) and wl(t + 1) in (9) using (2). Then, use the property

äx+t − 1 = px+täx+t+1/(1 + R). Finally substitute M l(t + 1) in (9) using (7). We then

obtain:

C l(t+ 1) = C l(t)px+t/p̂x+t (12)

Same reasoning,

Ch(t+ 1) = Ch(t)px+t/p̂x+t (13)

This gives us the same conclusion on what causes the income fluctuation as in the

homogeneous case. That is, under our assumptions of fixed investment return and zero

systematic longevity risk, the income fluctuations only come from the difference between

the survival probability observed and the survival probability assumed to be true which is

the source of idiosyncratic longevity risk. If the idiosyncratic longevity risk is perfectly

pooled, the empirical survival probability is observed equal to the true survival probability

(px+t/p̂x+t = 1), the income fluctuation will become zero.

plugging equation (4) into equation (3), we obtain that:

Ch(t) = a ∗ C l(t), t ≥ 0 (14)

4.3. The Main Theorem

We use the same method to study income stability as in the homogeneous case. Fix

ε1 ∈ (0, 1) as the lower threshold parameter. Fix ε2 > 0 as the upper threshold parameter.
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Fix β as the smallest probability for a scenario of future income stream to happen. Income

C l(t) at time t > 0 is considered as stable if it stays close enough to the initial income

C l(0). Therefore, we define C l(t) to be stable if C l(t) ∈ [C l(0)(1 − ε1), C l(0)(1 + ε2)],

where C l(0)(1− ε1) is the lower income threshold and C l(0)(1 + ε2) is the upper income

threshold. Same reasoning, Ch(t) ∈ [Ch(0)(1 − ε1), Ch(0)(1 + ε2)] is defined as stable

income. Using (10), we can prove that if C l(t) stays stable, then Ch(t) also stays stable

and vise versa. Therefore, we can simply observe the time period where C l(t) stays stable

to determine the time length of stable income for the whole group.

To find the number of members named KC who can receive stable income for life

with at least probability β, we have the following expression:

P [ (1 + ε2)C
l(0) ≥ C l(s) ≥ (1− ε1)C l(0) for all s ∈ {1, 2, ..., bTkc}] ≥ β

wherebTkc represents the integer part of T(k), the time point when k members have dead

in the pooled annuity group. The largest k that satisfy the expression above is denoted as

KC . Recall that due to the complexity of calculating KC , we calculate its lower bound

KU based on the theory below.

Theorem 4.1. Let U(1), U(2), ..., U(N) be the ordered statistics of N independent

and standard uniformly distributed random variables U1, U2, ..., UN . Fix constants ε1 ∈
(0, 1), ε2 > 0 and K ∈ {1, 2, ...N}.

P [ (1 + ε2)C
l(0) ≥ C l(s) ≥ (1− ε1)C l(0) for all s ∈ {1, 2, ..., bTkc}]

≥ P

[[
U(i) ≤ ε1 +

(1− ε1)(Ll(T(i−1)) + a ∗ Lh(T(i−1)))
N l + a ∗Nh

for all i ∈ {1, 2...k}
]

∩
[
U(i) ≥ −ε2 +

(1 + ε2)(L
l(T(i)) + a ∗ Lh(T(i)))
N l + a ∗Nh

for all i ∈ {1, 2...k} \ {N}
]]

Proof. Fix t ∈ N and assume that at least one person is alive at age x + t + 1. With

equation (10), it can be proved by induction that:

C l(t+ 1) = C l(0)
t∏

j=0

px+j
p̂x+j

= C l(0)
t+1px

t+1p̂x

Noting sp̂x > 0 for all s ∈ {1, 2, ..., bTkc}, and as the joint distribution of

T1, T2, ..., Tn is continuous, the set [bTkc ≤ T(k), for k = 1, 2, ..., N ] has measure one.

[ (1 + ε2)C
l(0) ≥ C l(s) ≥ (1− ε1)C l(0) for all s ∈ {1, 2, ..., bTkc}]
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= [ 1 + ε2 ≥ spx

sp̂x
≥ 1− ε1 for all s ∈ {1, 2, ..., bTkc}]

=

[
inf

s∈{1,2,...,bTkc}

spx

sp̂x
≥ 1− ε1

]
∩
[

sup
s∈{1,2,...,bTkc}

spx

sp̂x
≤ 1 + ε2

]
Since {1, 2, .., bTkc} ⊂ [ 0, Tk) ⊂ [ 0, Tk+1)

inf
s∈[ 0,Tk)

sp̂x

spx
≤ inf

s∈{1,2,...,bTkc}

sp̂x

spx

sup
s∈[ 0,Tk+1)

spx

sp̂x
≥ sup

s∈{1,2,...,bTkc}

spx

sp̂x

And,

inf
s∈[ 0,Tk)

sp̂x

spx
≥ 1− ε1 ⇒ inf

s∈{1,2,...,bTkc}

spx

sp̂x
≥ 1− ε1

sup
s∈[ 0,Tk+1)

spx

sp̂x
≤ 1 + ε2 ⇒ sup

s∈{1,2,...,bTkc}

spx

sp̂x
≤ 1 + ε2

Therefore,

[
inf

s∈[ 0,Tk)

spx

sp̂x
≥ 1− ε1

]
∩
[

sup
s∈[ 0,Tk+1)

spx

sp̂x
≤ 1 + ε2

]

⊂
[

inf
s∈{1,2,...,bTkc}

spx

sp̂x
≥ 1− ε1

]
∩
[

sup
s∈{1,2,...,bTkc}

spx

sp̂x
≤ 1 + ε2

]
In summary,

[
inf

s∈[ 0,Tk)

spx

sp̂x
≥ 1− ε1

]
∩
[

sup
s∈[ 0,Tk+1)

spx

sp̂x
≤ 1 + ε2

]

⊂ [ (1 + ε2)C
l(0) ≥ C l(s) ≥ (1− ε1)C l(0) for all s ∈ {1, 2, ..., bTkc}] (15)

The Empirical distribution function of death times of Group L members

T l1, T
l
2, ..., T

l
N l is defined at t > 0:
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F̂N l(t) :=
1

N l

N l∑
i=1

1{T l
i≤t}

The Empirical distribution function of death times of Group H members

T h1 , T
h
2 , ..., T

h
Nh is defined at t > 0:

F̂Nh(t) :=
1

Nh

Nh∑
i=1

1{Th
j ≤t}

The distribution function of all fund members’ death time T1, T2, ..., TN is defined

at t > 0 as F (t). And spx = 1− F (s).

Then, from equation (5) and (6):

sp̂
l
x = 1− F̂N l(s)

sp̂
h
x = 1− F̂Nh(s)

Therefore,[
inf

s∈[ 0,Tk)

spx

sp̂x
≥ 1− ε1

]
∩
[

sup
s∈[ 0,T(k+1))

spx

sp̂x
≤ 1 + ε2

]

=

[
inf

s∈[ 0,Tk)

1− F (s)

( N l

N l+aNh ) ∗ (1− F̂N l(s)) + ( aNh

N l+aNh ) ∗ (1− F̂Nh(s))
≥ 1− ε1

]

∩
[

sup
s∈[ 0,T(k+1))

1− F (s)

( N l

N l+aNh ) ∗ (1− F̂N l(s)) + ( aNh

N l+aNh ) ∗ (1− F̂Nh(s))
≤ 1 + ε2

]

To simplify the writing, we let:

µ =
N l

N l + aNh

ν =
aNh

N l + aNh

Therefore,[
inf

s∈[ 0,Tk)

spx

sp̂x
≥ 1− ε1

]
∩
[

sup
s∈[ 0,T(k+1))

spx

sp̂x
≤ 1 + ε2

]
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=

[
inf

s∈[ 0,Tk)

1− F (s)

µ ∗ (1− F̂N l(s)) + ν ∗ (1− F̂Nh(s))
≥ 1− ε1

]
(16)

∩
[

sup
s∈[ 0,T(k+1))

1− F (s)

µ ∗ (1− F̂N l(s)) + ν ∗ (1− F̂Nh(s))
≤ 1 + ε2

]

Where 1−F (s)

µ∗(1−F̂
Nl (s))+ν∗(1−F̂Nh (s))

:= 1

When µ ∗ (1− F̂N l(s)) + ν ∗ (1− F̂Nh(s)) = 0. Let T(0) := 0. As the joint

distribution of T1, T3, ..., TN is continuous, the set [T(i−1) < T(i)], for K = 1, 2, ..., N + 1]

has measure one. In the following, we work on this set only.

Consider a random time interval [T(i−1), T(i)). According to the definition, F̂ l
N(S)

(F̂ h
N(S))is an increasing function which increases by one at each Group L (Group H)

member’s death time.Therefore the value of F̂ l
N(S) (F̂ h

N(S)) in [T(i−1), T(i)) is a fixed

number F̂ l
N(T(i−)) = F̂ l

N(T(i−1)) (F̂ l
N(T(i−)) = F̂ l

N(T(i−1))).

And as F (S) is an increasing function, 1−F (S) is an decreasing and takes mini-

mum in [T(i−1), T(i)) at T(i−). By continuity of F, T(i−) = T(i).

Therefore,

inf
s∈[T(i−1),T(i))

1− F (s)

µ ∗ (1− F̂N l(s)) + ν ∗ (1− F̂Nh(s))

=
1− F (T(i−))

µ ∗ (1− F̂N l(T(i−))) + ν ∗ (1− F̂Nh(T(i−)))

=
1− F (T(i))

µ ∗ (1− F̂N l(T(i−1))) + ν ∗ (1− F̂Nh(T(i−1)))

Same reasoning, F(S) takes maximum in [T(i−1), T(i)) at T(i−1).

Therefore,

sup
s∈[T(i−1),T(i))

1− F (s)

µ ∗ (1− F̂N l(s)) + ν ∗ (1− F̂Nh(s))

=
1− F (T(i−1))

µ ∗ (1− F̂N l(T(i−1))) + ν ∗ (1− F̂Nh(T(i−1)))

Therefore,



16

[
inf

s∈[ 0,Tk)

1− F (s)

µ ∗ (1− F̂N l(s)) + ν ∗ (1− F̂Nh(s))
≥ 1− ε1

]

=

[
inf

i∈{1,2...k}

1− F (T(i))

µ ∗ (1− F̂N l(T(i−1))) + ν ∗ (1− F̂Nh(T(i−1)))
≥ 1− ε1

]
(17)

[
sup

s∈[ 0,Tk+1)

1− F (s)

µ ∗ (1− F̂N l(s)) + ν ∗ (1− F̂Nh(s))
≤ 1 + ε2

]

=

[
sup

i∈{1,2...k+1}

1− F (T(i−1))

µ ∗ (1− F̂N l(T(i−1))) + ν ∗ (1− F̂Nh(T(i−1)))
≤ 1 + ε2

]

=

[
sup

i∈{1,2...k+1}

1− F (T(i−1))

µ ∗ (1− F̂N l(T(i−1))) + ν ∗ (1− F̂Nh(T(i−1)))
≤ 1 + ε2

]
(18)

As F is continuous, the random variablesUi = F (Ti) are independent and standard

uniformly distributed. Therefore, we have:

U(i) = F (T(i)) for i = 1, 2, ..., N

Then, according to the definition of F̂N l and F̂Nh , we have:

[
inf

i∈{1,2...k}

1− F (T(i))

µ ∗ (1− F̂N l(T(i−1))) + ν ∗ (1− F̂Nh(T(i−1)))
≥ 1− ε1

]

∩
[

sup
i∈{1,2...k}

1− F (T(i))

µ ∗ (1− F̂N l(T(i))) + ν ∗ (1− F̂Nh(T(i)))
≤ 1 + ε2

]

=

[
inf

i∈{1,2...k}

1− U(i)

N l

N l+a∗Nh ∗ (1− Ll(T(i−1))

N l ) + a∗Nh

N l+a∗Nh ∗ (1− Lh(T(i−1))

Nh )
≥ 1− ε1

]

∩
[

sup
i∈{1,2...k}

1− U(i)

N l

N l+a∗Nh ∗ (1− Ll(T(i))

N l ) + a∗Nh

N l+a∗Nh ∗ (1− Lh(T(i))

Nh )
≤ 1 + ε2

]
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=

[
U(i) ≤ ε1 +

(1− ε1)(Ll(T(i−1)) + a ∗ Lh(T(i−1)))
N l + a ∗Nh

for all i ∈ {1, 2...k}
]

∩
[
U(i) ≥ −ε2 +

(1 + ε2)(L
l(T(i)) + a ∗ Lh(T(i)))
N l + a ∗Nh

for all i ∈ {1, 2...k} \ {N}
]

Combine (15)-(18) and take the probability, we obtain the desired result. �

Corollary 4.2. Suppose that for K ∈ N and ε ∈ (0, 1),

P

[[
U(i) ≤ ε+

(1− ε)(Ll(T(i−1)) + a ∗ Lh(T(i−1)))
N l + a ∗Nh

for all i ∈ {1, 2...k}
]

∩
[
U(i) ≥ −ε+

(1 + ε)(Ll(T(i)) + a ∗ Lh(T(i)))
N l + a ∗Nh

for all i ∈ {1, 2...k} \ {N}
]]
≥ β

(19)

Then,

P [ (1 + ε2)C
l(0) ≥ C l(s) ≥ (1− ε1)C l(0) for all s ∈ {1, 2, ..., bTkc}] ≥ β (20)

Proof. Apply theorem 3.1 with ε1 = ε2 = ε �

Corollary 4.3. Suppose that for K ∈ N and ε ∈ (0, 1),

P

[[
U(i) ≤ ε+

(1− ε)(Ll(T(i−1)) + a ∗ Lh(T(i−1)))
N l + a ∗Nh

for all i ∈ {1, 2...k}
]
≥ β (21)

Then,

P [ (1 + ε2)C
l(0) ≥ C l(s) ≥ (1− ε1)C l(0) for all s ∈ {1, 2, ..., bTkc}] ≥ β (22)

Proof. Apply theorem 3.1 with ε1 = ε, ε2 ↑ ∞,

−ε2 +
(1 + ε2)(L

l(T(i)) + a ∗ Lh(T(i)))
N l + a ∗Nh

=
(Ll(T(i)) + a ∗ Lh(T(i)))

N l + a ∗Nh
+ ε2(

(Ll(T(i)) + a ∗ Lh(T(i)))
N l + a ∗Nh

− 1)→ −∞

for all i ∈ {1, 2, ..., N − 1}

�
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4.4. Calculation of KU

Recall that our goal is to find the number of people who can receive stable life-long

income with at least probability β. But due to the complexity of calculating KC directly

from (20), we calculate its lower bound KU from (19). To calculate KU , we use Monte

Carlo simulation.

Let N as the initial number of people in the pooled annuity fund group. Then we

let N l be the initial number of people in Group L, and Nh be the initial number of people

in Group H. Thus we have N = Nh + N l. Then we fix β, and ε. Let ε1 = ε2 = ε

thus income thresholds are systematic about initial incomes. Let positive integer M be the

number of repentance of the simulation process. In our study, we fix M as 100000.

Moreover, it is important for our study to know, to which group a person belongs,

when the person dies. Considering an empty vector of length N, we sample N l positions

from the vector and mark them as deaths of Group L members, and the rest of the positions

are marked as deaths of Nh members.

We generate M sample vectors of the uniform ordered statistics (U(i))
N

i=1
. We call

mth sample vector as (U
(m)
(i) )

N

i=1
for m ∈ {1, 2, ...,M}. Then we conduct simulation and

find the first integer i(m) ∈ {1, 2, ..., N} that fails equation (19). Then record K(m) =

i(m)− 1. If i(m) does not exist, record k(m) = N.

After M times of simulation, we obtain a vector of K(m) which we called

K(m)Mi=1. Then we take the β − th quantile of K(m)Mi=1 as KU .

We use a shortcut which avoid sorting when generating ordered standard uniform

distribution (U
(m)
(i) )

N

i=1
. This method is according to Devroye’s study, where Devroye con-

cludes that uniform ordered statistics are ratios of sums of exponential random variables.

4.5. Numerical Results

Pooled annuity group of 1000 members is studied and the systematic income thresh-

old ε is fixed as 0.1, desired probability β is fixed as 0.1. To simplify the simula-

tion process, a lower bound is considered. And each KU is calculated from 100000

times of simulation. The goal is to see how does KU responds to the changes in ac-

count value ratio and the size of Group L. We choose five account ratio to observe:

W l(t)/W h(t) = 0.1, 0.2, 0.3, 0.5, 0.7. With each fixed account ratio, we choose N l to

be 10,20,30,...,1000. Then, we compute KU for each possible combination of parameters

and generate a data set of 500 KU values. To visualize the result, we generate figure 4.

The solid lines shows the relationship between KU and N lThe dashed lines are reference
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lines that generated from homogeneous groups. The long dashed line shows the number

of members in Group H who can receive lifetime stable income when isolating Group

H as a homogeneous group. The dotted dashed line shows the number of members in

Group L who can receive lifetime stable income when isolating Group L as a homoge-

neous group. The short dash line shows the number of members who can receive lifetime

stable income in a 1000 member homogeneous group. By observing figure 4, we have

several findings:

Figure 3. Simulation Result

• The number of members who can receive lifelong stable income (KU ) depends on

the initial sub-group sizes and account value ratio. In Figure 5, at the same size of

Group L, the group with a higher account value ratio has more people receiving

lifelong stable income. When the initial account value is fixed, KU changes with

the size of Group L.

• When the size of Group L is fixed, non-homogeneous group is more likely to

obtain better income stability. For example when the size of Group L is 500,

the smallest KU of non-homogeneous group in the graph is 715. However, when

separating Group L and Group G as two homogeneous groups, the total number

of people who can receive lifetime stable income in Group L and Group G is 662.

• When the account ratio becomes smaller enough and the size of Group L becomes

large enough, the advantage of the non-homogeneous group in income stability
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starts to vanish and Group L starts loosing benefit. There are parts of solid curves

staying below the dotted dashed curve, where the KU of Group L in mixed group

is less than that of isolated Group L.

• The income stability of an 1000 member homogeneous group seems to be always

better than the income stability of an 1000 member non-homogeneous group. In

the graph, the horizontal curve atKU = 800 is always above the solid lines, which

shows KU of the 1000 member homogeneous group is always larger than that of

1000 member non-homogeneous groups.

4.6. Conclusions

The income stability of a non-homogeneous pooled annuity group is studied. A math-

ematical expression used to calculate the number of members who can receive lifelong

stable income is derived. Through Monte Carlo simulation, numerical results are gener-

ated for groups with different sub-group size and account ratio.

The numerical result suggests that given the group size, whether the non-

homogeneous group can obtain better income stability than separated homogeneous

groups depends on the choice of group size and account ratio. By choosing an appropri-

ate combination of account ratio, and sub-group size, the mixed non-homogeneous group

can have more people receiving a lifelong stable income than the separated homogeneous

group. However, when the account ratio becomes sufficiently small and the portion of

members with lower account value becomes sufficiently large, the members with lower

account value can no longer have higher income stability in the non-homogeneous group.

In the future, the study will focus on quantifying the trade-off between account

ratio, sub-group size and income stability. Specifically, knowing homogeneous groups

and their income stability, the study will derive a model on predicting the income stability

of the mixed non-homogeneous group. In application, the study will provides methods on

finding the way of maximizing income stability when designing the group formation.
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