
Coding theory and Grassmannian varieties

Pengrun Huang
Advised by Eric Canton

August 20, 2020

Abstract

The main goal of this REU project is to study linear codes using Grass-
mannian varieties.
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1 Introduction

Coding theory is the branch of mathematics that studies data transmission and
error correction. Claude Shannon began the study of coding theory when he
identified that channels have a capacity, and proved that arbitrarily reliable
communication is possible at any rate below the channel capacity [1].

The common feature of communication channels is that information is ema-
nating from a source and is sent over the channel to a receiver at the other end.
However, the channel can be noisy in the sense that information been sent over
the channel may be corrupted. In other words, what is received is not always
the same as what is sent. A communication channel is illustrated in Figure 1.1.
For example, we can encode voice, music, or data into binary and send it over
the channel. Two types of channels are cable channel - such as twisted-pair
wire and fiber-optic cable - and broadcast channel -such as microwave, satellite
and radio. When a 0 is sent, we hope it can be received as 0, but sometimes it
may be received as 1 (or as unrecognizable). Hence, one fundamental problem
in coding theory is to determine what message was sent on the basis of what
is received. The basic idea for error-correcting codes is to add redundant in-
formation to the original codes so that we could decode the received message
back to original information. People seek to design codes that have great error
correction properties.

Figure 1: Communication channel

In Section 2, we study some properties of Linear codes that ensure a high
error-correcting capability. We prove that the number of errors linear codes are
able to detect and correct is determined by minimum distance, or minimum
weight. [2] [3]

In section 2 we show that linear code can be understood as subspace of vector
space, in Section 3, we study Grassmannian variety in algebraic geometry. We
first study Plucker embedding, which embed a subspace into a point in certain
projective space, and its property of being a projective variety of a quadratic
polynomial. Then, we study basic topology and Zariski topology, a kind of
topology defined on varieties. [4] [5] [6]

In Section 4, we first closely examine G(2, 4), every 2 dimensional subspace
of a 4 dimensional space. We observe that a subset of linear codes have same
hamming distance between every codewords. We study the group structure
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of isometric codes in Fq. First we study the most common isometric codes,
permutationally isometric codes. Then we generalize it into linearly isometry.
We relax the condition of linearity and study semilinear isometric codes. Our
presentation here closely follows [7]. We restrict the field into F2 and prove
that in F2, if two linear codes are isometric, under three different definition of
isometry, they will have the same Hamming weight of Grassmannian varieties.

2 Basic concepts in coding theory

2.1 Linear code and generator matrix

Let Fnq denote the vector space of all n-tuples over the finite field Fq. An (n,M)
code over Fq is a subset C of Fnq of size M . We will write a vector (a1, a2..., an)
in Fnq in the form a1a2...an, and call the vectors in C codewords. If C is a k-
dimensional subspace of Fnq , then C will be called an [n, k] linear code. An [n, k]

linear code C has qk codewords, so is an (n,M) code.
One common ways to present a linear code is through a generator matrix. A

generator matrix for an [n, k] linaer code C is any k × n matrix G whose rows
form a basis for C.

Example 2.1. The following is an example of [4, 2] linear code:
0 0
1 0
0 1
1 1

× [1 0 1 1
0 1 0 1

]
=


0 0 0 0
1 0 1 1
0 1 0 1
1 1 1 0


In this example, the rows of matrix

[
1 0 1 1
0 1 0 1

]
form a 2 dimensional

subspace of a 4 dimensional space, hence it is a generator matrix for [4,2] linear
code. The codewords are 0000, 1011, 0101, 1110.

2.2 Weight, distance and error-correcting capability

Definition 2.1. The Hamming weight of an element u ∈ Fnq is the number of
nonzero coordinates in u, denoted as Wt(u).

Definition 2.2. Let u, v ∈ Fnq . The Hamming distance between u and v,
denoted as d(u, v), is the number of coordinates in which u and v differ.

Example 2.2. Let u = 01001, v = 10110 ∈ F5
2. In this case, Wt(u) = 2 and

Wt(v) = 3. Since 00000 has weight 0, Wt(u) = d(u, 0). Finally, d(u, v) = 5
since u and v differ in all coordinates.

The next lemma proves the relationship between Hamming weight and dis-
tance that we have observed in the previous example.

Lemma 2.1. If u, v, w ∈ Fnq , then
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1. d(u, v) = Wt(u− v), and

2. d(u, v) ≤ d(u,w) + d(w, v).

Proof. Fix u, v, w ∈ Fnq .

1. A coordinate of u − v is nonzero if and only if u and v differ in that
coordinate. Hence, the number of nonzero coordinates in u − v, namely
Wt(u − v), is the same as the number of coordinates in which u and v
differ, namely d(u, v).

2. By (1), it is equivalent to prove Wt(u, v) ≤ Wt(u − w) + Wt(w − v).
We need to verify that whenever u − v has non-zero i-th coordinate, at
least one of u − w and w − v also has nonzero i-th coordinate. Suppose
the i-th coordinate ui − vi is nonzero. If the ith coordinate ui − wi is
nonzero, then there is nothing to prove. If ui − wi = 0, then ui = wi and
wi − vi = ui − vi 6= 0. Therefore, wi − vi is nonzero.

Given a codeword u is send and the word v is received, the number of errors
in the transmission is the number of coordinates in which u and v differ, in
other words, the Hamming distance between u and v. According to probability
theory, a large number of transmission errors is less likely than a small number
of transmission errors, hence the nearest codeword to a received word is most
likely to be the codeword that was transmitted. Therefore, a received word is
decoded as the codeword that is nearest to it in Hamming distance, which is
called nearest-neighbor decoding.

Definition 2.3. A linear code is said to correct t errors if every codeword that
is transmitted with t or fewer errors is correctly decoded by nearest-neighbor
decoding.

The following theorem proves a direct implication between minimum dis-
tance and error correction.

Theorem 2.1. A linear code corrects t errors if and only if the Hamming
distance between any two codewords is at least 2t+ 1.

Proof. Assume the distance between any two codewords is at least 2t + 1. If
the codeword u is transmitted with t or fewer errors and received as w, then
d(u,w) ≤ t. If v is any other codeword, then d(u, v) ≥ 2t + 1 by hypothesis.
Hence, by Lemma 2.1,

2t+ 1 ≤ d(u, v) ≤ d(u,w) + d(w, v) ≤ t+ d(w, v)

Subtracting t from both sides of 2t+ 1 ≤ d(w, v) + t shows that d(w, v) ≥ t+ 1.
Since d(u,w) ≤ t, u is the closest codeword to w, so nearest-neighbor decoding
correctly decodes w as u. This completes the proof.

4



Definition 2.4. A linear code is said to detect t errors if the received word in
any transmission with at least one, but no more than t errors, is not a codeword.

Just as with error correction, there is a direct implication between minimum
distance and error detection:

Theorem 2.2. A linear code detects t errors if and only if the Hamming dis-
tance between any two codewords is at least t+ 1.

Proof. Assume that the distance between any two codewords is at least t + 1.
If the codeword u is transmitted with at least one, but no more than t errors,
and received as w, then

0 ≤ d(u,w) ≤ t, hence d(u,w) < t+ 1,

so w cannot be a codeword. Therefore, the code detects t errors.

Theorem 2.3. If x, y ∈ Fnq , then d(x, y) = Wt(x−y). If C is a linear code, the
minimum distance between any two codewords in C is the same as the minimum
weight of some nonzero codeword of C.

Proof. The idea of the proof is that if C is linear codes, then subtraction of
two vectors is in the subspace, i.e x − y is a codeword in C. Hence, minimum
distance is the same as minimum weight of nonzero codeword of C.

We see thus that the error-correcting or detecting capability of a code is
closely related to the minimum distance of that code. By Theorem 2.3, the
minimum distance is the smallest distance between distinct codewords, or min-
imum weight. Therefore, this property is the most interesting property we are
concerned about.

3 Grassmannian varieties

A linear code C is a subspace of a vector space by section 2. In this section,
we introduce Grassmannian varieties, which embeds a d-dimensional subspace
of a n dimensional vector space into a certain projective space using Plucker
embedding.

3.1 Varieties and projective varieties

Let k be an algebraically closed field, and let k[x1, .., xn] be the polynomial ring
with n variables, denoted as k[X]. We define n-dimensional affine space, An, to
be kn. Given f ∈ k[X], we view f as a k-valued polynomial on affine space by
evaluation, f : (x1, ..., xn) 7→ f(x1, ..., xn).

Definition 3.1. Given a subset S ⊂ k[X], let V (S) = {X ∈ An| f(X) = 0,
∀f ∈ S}. If S ⊂ An is such that W = V (S) for some S ⊂ k[X], we say that W
is an affine variety.
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Definition 3.2. Given an affine variety W ∈ An, let I(W ) = {f ∈ k[X]|
f(a1, ..., an) = 0 for all (a1, ..., an) ∈ W}. This set is called the ideal of the
variety W .

Define n-dimensional projective space, Pn, to be the quotient of An \0 by the
action of k× on An+1 by multiplications, that is, [a0 : ... : an] ∼ [λa0 : ... : λan]
for all nonzero λ ∈ k. This induces a coordinate system on the resulting quo-
tient space Pn called homogeneous coordinates. A point in Pn is denoted by
[a1, ..., an], and [a1 : ... : an] = [λa1 : ... : λan] for all nonzero λ in k. We observe
that two points in An are identical in projective space if and only if they lie on
the same line through the origin. Hence, we can also view Pn as the space of
lines in An+1 through the origin.

In general, a polynomial f ∈ k[x0, ..., xn] is not a function on Pn, for
f(a0, ..., an) need not equal f(λa0, ..., λan). Hence, on projective space, we only
focus our attention to the homogeneous polynomials.

Definition 3.3. A homogeneous polynomial of degree m is a polynomial f ∈
k[x] such that f(λa0, ..., λan) = λmf(a0, ..., an) for all λ ∈ k×.

Even though homogeneous polynomials are not always well-defined on Pn,
they have well-defined zero locus.

Definition 3.4. A projective variety is a subset W ⊂ Pn such that W = V (S)
for some collection of homogeneous polynomials S ∈ k[X].

3.2 Plucker embedding

Definition 3.5. Let n ≥ 2 and consider the k-vector space M of dimension
n. For 1 ≤ d ≤ n, we define the Grassmannian Gd,M , or it can be denoted as
G(n, k), to be the space of d-dimensional vector subspaces of M .

Fix a field k, a vector space M of dimension n < ∞ over k, and a basis
{e1, ..., en} for M . Define ∧dM (d-fold ∧ -product) to be the vector space
whose elements are string of the form x1 ∧ x2 ∧ ... ∧ xd, with all xi ∈ M , with
following condition

1. If xi = xi+1 for some 1 ≤ i < k, then x1 ∧ ... ∧ xi ∧ xi ∧ ... ∧ xk = 0.

2. xi ∧ xj = - xj ∧ xi, for all xi, xj ∈ M.

Example 3.1. Suppose the dimension n of M is 2, so we have a basis {e1, e2}.
Given any x ∈ M, there are x1, x2 ∈ k so that x = x1e1 + x2e2. We have

x ∧ y = (x1e1 + x2e2) ∧ (y1e1 + y2e2)

= x1y1(e1 ∧ e2) + x1y2(e1 ∧ e2) + x2y1(e2 ∧ e1) + x2y2(e2 ∧ e2)

= (x1y2 − x2y1)e1 ∧ e2
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We observe that the coefficient of e1∧e2 is the determinant of

[
x1 y1

x2 y2

]
. Hence,

we introduce another useful interpretation of exterior product in our use.

Definition 3.6. Let ek = (0, ..0, 1, 0, ..0) ∈ Rn, and x1...xn be n vectors in
Rn x1 ∧ ... ∧ xn = c e1 ∧ ... ∧ en, and c is the determinant of the matrix
a11

a12
... a1n

a11
a22

... a2n

an1 an2 ... ann

, where xj =
∑n
i=1 aijei, j= 1, 2,.., n.

Theorem 3.1. The dimension of ∧dM is
(
n
d

)
, with a basis given by vectors of

the form ei1 ∧ ei2 ∧ ... ∧ eid with 1 ≤ i1 < i2 < ... < id ≤ n. When d = n the
space ∧dM is one dimensional, and for d > n the space ∧dM = 0.

Proof. This is only a sketch of prove that convey the main idea. The formal
proof of this theorem is more technical. Fixed a basis {v1, ..., vn} for M, and
consider the set {vi1 ∧ ... ∧ vid |1 ≤ i1 < ... < id ≤ n}. This set forms a basis
for ∧dM . Given the rules of exterior product, we can see that ∧dM is a vector
space of dimension

(
n
d

)
.

Plucker embedding is defined as the map in the following:

φ : Grd,M 7→ P(∧dM)

Given a subspace W ∈ Gd,V and a basis {w1, w2, ..., wd} of W, Plucker em-
bedding map W to w1 ∧ ... ∧ wd. Even though different choices of basis will
give different wedge product, we will show that this transformation is defined
in P(∧dM) by following lemma. In other words, the wedge product of different
selection of basis differ by scalar multiplication. We will also show that this
transformation is injective, i.e two linear code are the same if and only if the
coordinate of Grassmannian varieties are equivalent.

Lemma 3.1. Let W be a subspace of a finite dimensional k -vector space M, and
let B1 = {w1, ..., wd} and B2={v1, ..., vd} be two bases for W. Then v1 ∧ ... ∧ vd
= λw1 ∧ ... ∧ wd for some λ ∈ k.

Proof. Write wj = a1v1 + ...+ adjvd. Then

w1 ∧ ... ∧ wd = (a11v1 + ...+ ad1vd) ∧ ... ∧ (a1dv1 + ...+ addvd)

=
∑
σ∈Sd

ε(σ)a1σ(1)...adσ(d)v1 ∧ ... ∧ vd

where ε(σ) is the sign of σ.
∑
σ∈Sd

ε(σ)a1σ(1)adσ(d) is the determinant of the
change of basis matrix from B1 to B2.

Proposition 3.1. φ : Grd,M 7→ P(∧dM) is injective.
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Proof. Define a map
p : P(∧dM) 7→ Gd,M

∀[w] ∈ P(∧dM), p([w]) = {v ∈M |v ∧ w = 0 ∈ ∧d+1V }

We want to show that the composition of function φ ◦ p is id. Let W ∈ Gd,n
has basis {w1, ..., wd} so that [w1 ∧ ... ∧ wd] = p(W ). Then for each w ∈ W ,
w ∧ w1 ∧ ... ∧ wd = 0. Extend the linearly independent set{w1...wd} to a basis
{w1...wn} for M . Then writing

v =
∑

aiwi, (
∑

aiwi) ∧ w1 ∧ ... ∧ wn = 0

After distributing and using the properties of the wedge product, we see that
all the ai = 0 for i > d and thus v = a1w1 + ...+ adwd. Therefore, v ∈ W and
φ ◦ p ∈W , completing the proof that φ ◦ p = id

The following lemma prove that the coordinates of Grassmannian varieties
are maximal minor of generator matrix, which is helpful for our use.

Proposition 3.2. The ith homogeneous coordinate for φ(W) ∈ Pn is given by
the corresponding d× d minor of MW .

Proof. Let Id,n = {̄i = (i1, ..., id)|1 ≤ i1 < ... < id ≤ n} and index the co-

ordinates of P(n
k)−1 by Id,n. More specifically, let the basis vector of P(n

k)−1

indexed by ī = (i1, ..., id) be vi1 ∧ ... ∧ vid . Given a subspace W ∈ Gd,n, choose
a basis {w1, ..., wd} for the subspace W. We write each wj in terms of the ba-
sis vectors for V as wj = a1jv1 + ... + anjvn. Define an n× d matrix MW by
MW = (aij). Note that the j-th column of MW is the coordinates of wj . Then
p: W 7→ [w1 ∧ w2 ∧ ... ∧ wd] and

w1 ∧ ... ∧ wd = (a11v1 + ...+ ad1vd) ∧ ... ∧ (a1dv1 + ...+ addvd)

=
∑
ī∈Id,n

∑
σ∈Sd

ε(σ)ai1σ(1)...aidσ(d)vī

Where ε(σ) denotes the sign of the permutation of σ. The i-th coordinate for
p(W ) is pī = det(Mī) where Mī is the d × d submatrix formed from the i1...id
rows of MW

3.3 Basic Topology and Zariski topology

Definition 3.7. A topology on a set X is a collection U of subsets of X which
satisfies:

1. ∅ and X are in U

2. U is closed under finite intersection

3. U is closed under arbitrary union
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Members of U are called the openset of the topology. There is an equivalent
formulation using closed sets, which is the complement of an open set - a finite
union of closed sets is closed, as is any intersection of closed sets.

Zariski topology is a kind of topology on kn in which the closed sets are affine
varieties. We can check that it satisfies the definition of topology.

V (k[X]) = ∅

V (0) = An

Hence it is enough to check that the finite union and arbitrary intersection of
closed sets is closed. Given I, U ⊂ k[X], V (I), V (U) are closed sets in the
topological space.

V (I) ∩ V (U) = V (IU)

V (I) ∪ V (U) = V (I + U)

Hence, the set of affine varieties is a topological space. In the following, we
will show that the coordinates of Grassmannian under Plucker embedding is a
projective variety, hence it is also called Grassmannian varieties.

Theorem 3.2. The Grassmannian G(k, n) ⊂ P(K(n
k)) is Zariski closed and

irreducible.

Proof. First let us assume that the matrix Mw representing W as of the form:
1 0 . . . 0
0 1 . . . 0 A
...

. . .
...

0 . . . 0 1


where A is a k× (n−k) matrix. Each maximal minor of Mw is, up to sign, a

minor of A of some size. Further, by Laplace expansion, a q × q minor of A for
q > 1 may be expressed, as a quadratic polynomial, in terms of smaller minors.
This gives us a collection of

min(k,n−k)∑
q=2

(
k

q

)(
n− k
q

)
inhomogeneous quadratic equation in the entries of the k × (n − k) matrix A.
This quadratic equation define the part of image of our map φ that lies in the

affine open set k(n
k)−1 ⊂ P(k(n

k)) given by the nonvanishing of the first coordi-
nate.
If φ(W ) has its first coordinate zero then some other coordinate will be non-
zero. Since W is a d dimensional subspace, the matrix Mw must have some
invertible k× k submatrix. If we multiply Mw on the left by the inverse of that
matrix then we obtain a matrix that looks like the matrix above but with its
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columns permuted. This gives us a system of
∑min(k,n−k)
q=2

(
k
q

)(
n−k
q

)
inhomoge-

neous quadratic equations in the k × (n− k) entries of the new matrix A.
Each of the quadratic equation in k × (n− k) variables obtained above can be

written as a homogeneous quadratic equation in the
(
n
k

)
coordinates on P(K(n

k)).
The collection of all these homogeneous quadratic equations gives a full poly-
nomial description of G(k, n).

The Grassmannian G(k, n) is an irreducible subvariety of P(k(n
k)) because it is

the image of a polynomial map φ, namely the image of the space kk×n of all
k × n matrices under taking all maximal minors.

4 Isometric code and Grassmannian varieties

Definition 4.1. A metric space is a set X together with a function d (called
a metric or distance function) which assign a real number d(x, y) to every pair
x, y ∈ X satisfying the axioms below:

1. d(x, y) > 0 and d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Theorem 4.1. The function:

d : Fn × Fn 7→ N : (u, v) 7→ |{i|i ∈ n, ui 6= vi|

is a metric on the vector space Fn, called the Hamming metric.

Proof. We can check that this function satisfies, for all u, v, w ∈ Fn: by defini-
tion of Hamming distance, number of different coordinate is a positive integer;
if the number of coordinate u and v differ is 0, then u = v, hence

d(u, v) = 0 ⇐⇒ u = v

Similarly,
d(u, v) = d(v, u)

By lemma 2.1, the following holds,

d(u, v) ≤ d(u,w) + d(w, v)

An isometry between two linear code is defined on Hamming distance as
follows.

Definition 4.2. Two linear codes C, C′ ⊆ Gr(k, n) are called isometric if there
exists an isometry ι that maps C onto C′, where ι is defined as:

ι : Gr(k, n) 7→ Gr(k, n)

d(u,w) = d(ι(u), ι(w)),∀u,w ∈ Gr(k, n)
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Definition 4.3. Two linear codes C,C ′ ⊂ Gr(k, n) are permutationally equiv-
alent if there exists a permutational isometry of Gr(k, n) that maps C onto C ′,
i.e there is a permutation π in the symmetric group Sn such that

C ′ = π(C) = {π(c)|c ∈ C}, d(c, c̃) = d(π(c), π(c̃))

∀c, c̃ ∈ C, where

π(c) = π(c0, ..., cn−1 := (cπ−1(0), ..., cπ−1(n−1))

Two isometric codes need not be permutationally equivalent codes, hence
we generalize this definition into a more general one, i.e linear isometric code.

Definition 4.4. Two linear codes C, C′ ⊆ Gr(k, n) are called linear isometric if
there exists a linear isometry of Gr(k, n) that maps C onto C′

Definition 4.5. Consider an action GX and a group H. The wreath product of
H with G, with respect to GX, consist of the set

H oX G := HX ×G = {(ϕ; g)|ϕ : X 7→ H, g ∈ G},

with multiplication defined by

(ϕ; g)(ϕ′; g′) := (ϕϕ′g; gg
′)

where (ϕϕ′g)(x) := ϕ(x)ϕ̇′g(x) and ϕ′g(x) := ϕ′(g−1x), for x ∈ X.

Proposition 4.1. Take H the multiplicative group F∗q of the field Fq. Let G be
the symmetric group Sn acting on the set n = {0, 1, ..., n − 1}, then the group
of linear isometries of the Hamming space is given by:

H oX G := F∗q on Sn = {(ϕ;π)|ϕ : n 7→ F∗q , π ∈ Sn}.

The action on Fnq is given in the following way:

F∗q on Sn × Fnq 7→ Fnq : ((ϕ;π), v) 7→ (ϕ(0)vπ−1(0), ..., ϕ(n− 1)vπ−1(n−1))

Proof. Any linear map is defined by the images of the unit vectors. Since linear
isometric preserve the Hamming weight, a unit vector e(i) is mapped to a nonzero
multiple of a unit vector, i.e:

ι(e(i)) = κje
(j), forsuitablej ∈ n, κj ∈ F∗q := Fq \ 0

Moreover, the sum of two different unit vectors is of weight 2, and so different
unit vector are mapped under ι to nonzero multiples of different unit vectors.
Hence there exists a unique permutation π in the symmetric group Sn and a
unique mapping φ from n=0,...,n-1 to F∗q such that

ι(e(i) = ϕ(π(i))e(π(i))
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In terms of these mappings, applying ι to v:=
∑
i∈n vie

(i) gives

ι(v) = (ϕ;π)(v) =
∑
i∈n

viϕ(π(i))e(π(i)) =
∑
i∈n

ϕ(i)vπ−1(i)e
(i)

i.e
(ϕ;π)((v0, ..., vn−1)) = (v0, ...vn) ·MT

(ϕ;π)

where M(ϕ;π) is the matrix whose k-th column is zero except for the (i, k)-entry
which is ϕ(i). Here i = π(k), so that

MT
(ϕ;π) =



0
...
0

0 . . . 0 φ(i) 0 . . . 0
0
...
0


i = π(k)

Theorem 4.2. 1. Assume that Fk×n,kq denotes the set of all k × n matrices of
rank k over Fq, k ≥ 1, and GLk(q) the set of all regular k × k matrices over
Fq. The set of all generator matrices of the linear (n, k)-code C with generator
matrix Γ ∈ Fk×n,kq is the orbit GLk(q)(Γ) = B · Γ|B ∈ GLk(q). Whence the set
of all linear (n, k)-codes over Fq, indicated it as U(n, k, q), can be identified with

GLk(q)\\Fk×n,kq

2. The linear isometry group Mn(q) acts on U(n, k, q), k ≥ 1, according to

Mn(q)× U(n, k, q) 7→ U(n, k, q) : (M(φ;π), C) 7→ {c ·MT
(φ;π)|c ∈ C}

The linear isometry class of the linear (n,k)-code C is the orbit

Mn(q)(C).

Hence, the set of linear isometry class of linear (n,k)-codes is

Mn(q)\\U(n, k, q)

3. The direct product (GLk(q)×Mn(q)), k ≥ 1, acts on Fk×n,kq by

(GLk(q)×Mn(q))× Fk×n,kq 7→ Fk×n,kq : ((B,M(φ;π)),Γ) 7→ B · Γ ·MT
φ;π

and so the set of linear isometry classes of linear (n, k)-codes corresponds to the
set of orbits

(GLk(q)×Mn(q))\\Fk×n,kq : ((B,M(φ;π))

12



Proposition 4.2. In F2, linearly isometric is equivalent to permutationally
isometric.

Proof. From proposition 4.1, we see that the mapping of unit vector in F2 is the
identity map. Hence, ϕ is id and π is the symmetry group.

Proposition 4.3. In F2, linear isometric code will have same Hamming weight
of Grassmannian variety.

Proof. From proposition 3.2 and theorem 3.1 we proof that coordinates of Grass-
mannian varieties are maximal minor of Mw, and the set {vi1 ∧ ...∧vid |1 ≤ i1 <
... < id ≤ n} forms a basis for ∧d(V ). From proposition 4.2, we prove that
in F2, linearly isometric code is equivalent to permutational isometric code.
Hence permutation of column of M will only permute the coordinates of Grass-
mannian varieties while the number of number coordinates in Grassmannian
varieties leaves unchanged.

Last but not the least, we can generalize the concept of linear isometric by
relaxing the condition of linearity.

Definition 4.6. The mapping σ : Fnq 7→ Fnq is called semilinar if there exist an
automorphism α of Fq such that, for all u, v ∈ Fnq and all κ ∈ Fq we have

σ(u+ v) = σ(u) + σ(v), σ(κu) = α(κ)σ(u).

Lemma 4.1. If the isometry ι : Fnq 7→ Fnq , n ≥ 3, maps subspace onto subspaces,
then for each u ∈ Fnq we have

ι(F∗q(u)) = F∗q(ι(u))

Moreover, there exists an automorphism α of Fq such that, for each κ ∈ Fq,

ι(κu) = α(κ)ι(u)

Proof. 1. First we consider the case u = 0. Since ι maps subspaces onto sub-
spaces, the space {0} must be mapped onto itself. Therefore, the assertion is
true for u = 0

2. Assume that u 6= 0. Since ι is bijective and it maps subspaces to sub-
spaces, ι(〈u〉) is a one-dimensional subsapce, and so, using ι(u) 6= 0, we have
ι(〈u〉) = 〈ι(u)〉. Moreover, as ι(0) = 0,

ι(F∗q(u)) = F∗q(ι(u)).

Hence, there is a permutation of the scalars φu ∈ SF∗
q
≤ SFq , depending possibly

on the vector u, which satisfies

ι(κu) = φu(κ)ι(u)
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The following shows that ψu is independent of u and that it is a field automor-
phism.

3. For the special case e :=
∑
i∈n e

(i) we have

ι(κe) = φe(κ)ι(e) = φe(κ)
∑
i∈n

ψ(π(i))(1)e(π(i)), κ ∈ F∗q ,

as well as
ι(κe) =

∑
i∈n

ψ(π(i))(κ)e(π(i)), κ ∈ F∗q ,

so we obtain

∀i ∈ n : φe(κ) =
ψ(π(i))(κ)

ψ(π(i))(1)
, κ ∈ F∗q .

4. The following prove that φe(κµ) = φe(κ)φe(µ), for κ, µ ∈ Fq. The
assertion is trivial for κ = 0 or µ = 0. Hence we restrict attention toκ, µ ∈ F∗q .
First, we consider a special case: Let w := e(0) + µe(i), for i 6= 0 and µ ∈ F∗q .
The corresponding equation ι(κw) = φw(κ)ι(w), κ ∈ F∗q , implies that

ψ(π(0))(κ)e(π(0)) + ψ(π(i))(κµ)e(π(i))

= φw(κ)(ψ(π(0))(1)eπ(0) + ψ(π(i))(µ)e(π(i)))

Comparing the coefficients of the basis vectors on both sides get two useful
identities. The coefficient of e(π(0)) give

ψ(π(0))(κ) = φw(κ)ψ(π(0))(1),

so that we can deduce

φw(κ) =
ψ(π(0))(κ)

ψ(π(0))(1)
= φe(κ), κ ∈ F∗q

and hence φw = φe in this particular situation. The second identity, obtained
by comparing the coefficient of e(π(i)), is

ψ(π(i))(κµ) = φw(κ)ψ(π(i))(µ).

Using φw = φe and dividing both sides by ψ(π(i))(1) we derive that

φe(κµ) = φe(κ)φe(µ), κµ ∈ F∗q ,

hence in this special case, φe is multiplicative.

5. Now consider the case when u 6= 0, we want to show that φu = φe. For
u =

∑
i∈n uie

(i) we get

ι(u) =
∑
i∈n

ι(uie
(i)) =

∑
i∈n

ψ(π(i))(1)eπ(i)

=
∑
i∈n

φe(ui)ψ(π(i))(1)e(π(i)).
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Since φe is multiplicative, we derive from κ ∈ F∗q that

ι(κµ) =
∑
i∈n

φe(κui)ψ(π(i))(1)e(π(i))

= φe(κ)
∑
i∈n

φe(ui)ψ(π(i))(1)e(π(i)) = φe(κι(u)),

which can be compared with the identity

ι(κu) = φu(κ)ι(u),

obtaining φe(κ) = φu(κ) for all κ ∈ F∗q . Hence we have proved that in fact
φu = φe as stated.

6. We also need to prove that φe is additive, i.e. φe(λ+µ) = φe(λ) +φe(µ),
λ, µ ∈ Fq. Since φe(0) = 0, this formula is true for λ = 0, orµ = 0. By
assumption n ≥ 3, and so we consider

u := e(0) + e(1), w := e(1) + e(2)

and the subspace U := 〈{u,w}〉 generated by these two vectors. For λ, µ ∈ F∗q ,
the vectors ι(λu), ι(µw) and ι(λu) + ι(µw), then

ι(z) = φe(λ)ψ(π(0))(1)eπ(0) + φe(λ)ψ(π(1))(1)eπ(1)

+φe(µ)ψ(π(1))(1)eπ(1)) + φe(µ)ψ(π(2))(1)eπ(2).

Since ψ(π(i))(1) 6= 0, we derive from these two representations of ι(z) that
φe(z0) = φe(λ) and φe(z2) = φe(µ). Since φe is a bijective on Fq, we obtain
z0 = λ, z2 = µ and

φe(λ) + φe(µ) = φe(z0 + z2) = φe(λ+ µ),

it completes the proof of the additivity.

7. Hence α := φe is in fact an automorphism of Fq which satisfies

ι(κu) = α(κ)ι(u), κ ∈ Fq, u ∈ Fnq .

Finally,

ι(u+ v) = ι(
∑
i∈n

(ui + vi)e
(i))

=
∑
i∈n

ι((ui + vi)e
(i))

=
∑
i∈n

α(ui + vi)ψ(π(i))(1)eπ(i)

=
∑
i∈n

α(ui)ψ(π(i))(1)eπ(i) +
∑
i∈n

α(vi)ψ(π(i))(1)eπ(i)

= ι(u) + ι(v)
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Follow from lemma 4.1

Theorem 4.3. For n ≤ 3, the isometries of Fnq which map subspaces onto
subspaces are exactly the semiliear mapping of the form (ϕ; (α, π)), where (ϕ;π)
is a linear isometry and α is a field automorphism. These mapping form a
group, the group of semilinear isometries.

Definition 4.7. Two (n,k)-codes C and C′ over Fq are called semilinarly iso-
metric if and only if there exists an automorphism α in Aut(Fq) and a linear
isometry (ϕ;π) in F∗q on Sn, such that the mapping:

(c0, ..., cn−1) 7→ (φ(0)α(cπ−1(0)), ..., φ(n− 1)α(cπ−1(n−1)))

maps C onto C′. The orbits of the group of semilinear isometries on the set of
subspaces of H(n,q) are the semilinear isometry classes of linear codes of length
n over Fq.
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