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Abstract. Riemann surfaces lie at the intersection of many areas of math. The Uniformization

theorem is a major result in Riemann surface theory. This paper, written at the 2019 Michigan

REU, gives a modern proof of the Uniformization theorem, investigating a lot of interesting math
along the way.
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Introduction

In Section 1, we give basic definitions and constructions relating to Riemann surfaces. In Section
2, we state and interpret the Uniformization theorem and develop some of the machinery needed to
prove the theorem, including the Riemann-Roch theorem and cohomology. Finally we tie everything
together in Section 3 with a proof of the Uniformization theorem via the Riemann-Roch theorem
and the Hodge Decomposition theorem for Riemann surfaces, along with a few analysis results
which lie at the heart of Riemann surface theory.

1. Riemann Surfaces and Covering Theory

Definition 1.1 (Riemann Surface). A Riemann surface is a 1-dimensional complex manifold.
That is, it is a Hausdorff space R such that for all p ∈ R, there is an open neighborhood Up
of p and a homeomorphism ϕp (called a “chart”) from Up to an open subset of C satisfying the
following compatibility criterion: For all p, q ∈ R, if Up ∩ Uq 6= ∅, then the transition function
ϕp ◦ ϕ−1

q : ϕq(Up ∩ Uq)→ ϕp(Up ∩ Uq) is holomorphic.
1
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The technical details of this definition are a little unwieldy. Intuitively, a Riemann surface is a
topological space that, near every point, “looks like” part of the complex plane. We only consider
connected Riemann surfaces in this paper.

Example 1.1. C is a Riemann surface. We can take C as Up and id : C→ C as ϕp for all p ∈ C.
Using the same construction, all open subsets of C are also Riemann surfaces. One that will be of
particular interest is the open unit disk D = {z ∈ C | |z| < 1}.

Example 1.2. The Riemann Sphere Ĉ, the complex plane with a point at infinity, is another
example of a Riemann surface. For any point p besides ∞, we take Up = Ĉ \ {∞} = C and

ϕp(z) = z. We also set U∞ = Ĉ \ {0} and ϕ∞(z) = 1
z , where 1

∞ is taken to be 0. The transition

functions ϕp ◦ϕ−1
q are the identity if Up = Uq and the function ϕp ◦ϕ−1

q (z) = 1
z on C\{0} otherwise

(in which case exactly one of p or q is ∞). In both cases, the transition function is holomorphic.

1.1. Maps between Riemann Surfaces. Maps between Riemann surfaces have many interesting
properties, and several will be important to this paper.

Definition 1.2 (Holomorphism). Let X and Y be Riemann surfaces. A function f : X → Y is
called holomorphic if, for all charts g of X and h of Y, h ◦ f ◦ g−1 is holomorphic (as a complex-
valued function) wherever this expression makes sense. If no codomain is specified, a holomorphic
function on X is taken to be a holomorphism X → C.

Definition 1.3 (Biholomorphism). A biholomorphism is a bijective holomorphism with holomorphic
inverse.

Remark. The definition of a biholomorphism is equivalent to the condition of being a holomorphic
homeomorphism. Since a biholomorphism preserves complex structure, two spaces are considered
“the same” in the category of Riemann surfaces if they are biholomorphic.

Definition 1.4 (Covering). For topological spaces X, Y , and a continuous surjection p : X → Y ,
p is a covering of Y by X if there exists a discrete space S such that for all y ∈ Y , there exists a
neighborhood V of y such that p−1(V ) is homeomorphic to V × S. If S is finite, |S| is called the
degree of the covering.

Example 1.3. One example, which we will come back to, is the covering of the torus C/〈1, i〉 by
C, where 〈1, i〉 acts on C by addition in C. See Figure 1.

We can think of p−1(V ) as several copies of V in the space X. It is also useful to define a relative
to the covering that behaves somewhat more irregularly than a covering.

Definition 1.5 (Ramified Covering). A continuous surjection p : X → Y is a ramified covering if
it is a covering except on a discrete set of points, called the ramification locus.

If a ramified covering has finite degree d away from the ramification locus, the points in the
ramification locus also have d preimages, counting multiplicity.

Theorem 1.1. Every non-constant holomorphic function f : X → Y between connected Riemann
surfaces, where X is compact, is a ramified covering.

Proof. The image of a compact space under a continuous function is compact, and the Open
Mapping Theorem states that every non-constant holomorphic function is an open map, so f(X)
is compact (therefore closed) and open in Y. Since f(X) is nonempty, this means f(X) = Y, so
f is a continuous surjection. For a proof that f has the remaining properties of a ramified cover,
see [FK92], §I.1.6. �
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Figure 1. This shows neighborhoods V1, V2, V3 of three points y1, y2, y3 so that
V1, V2, V3 behave as V does in the definition of the covering. Here, S is Z× Z.

The proof of Theorem 1.1 quickly gives another important result.

Theorem 1.2 (Liouville’s Theorem for Compact Riemann Surfaces). If X is a compact Riemann
surface, any holomorphic function f : X → C is constant.

Proof. By the proof of Theorem 1.1, if f were nonconstant, the image f(X) would be compact and
open in C. This implies f(X) = ∅, which is absurd. So f must be a constant function. �

By Theorem 1.2, holomorphic maps from compact Riemann surfaces to C do not give us any
useful information about compact Riemann surfaces. We will later have to consider nonconstant
meromorphic functions on compact Riemann surfaces, which are the same as holomorphic functions
from those surfaces to Ĉ.

1.2. Coverings and the Fundamental Group. In what follows, “covering” means an unramified
covering. Coverings interact nicely with many objects in the relevant topological spaces. For
instance, coverings transfer paths in the base Y to the cover X in a clean and natural way.

Theorem 1.3 (Path Lifting Property). Let p : X → Y be a covering, let γ : [0, 1]→ Y be a path,
and let p(x0) = γ(0). Then, there is a unique path γ̃ : [0, 1]→ X such that p(γ̃) = γ and γ̃(0) = x0.
We call γ̃ a lift of γ.

This is proven in [Hat02]. The path lifting property is especially interesting in the way it pertains
to loops, which may or may not themselves lift to loops. It is helpful to define the fundamental
group, a group of loops on a space X.

Definition 1.6 (Fundamental Group). For a topological space X and a point x0 ∈ X, the fundamen-
tal group π1(X,x0) is the set of homotopy classes of paths in X γ : [0, 1]→ X with γ(0) = γ(1) = x0

such that every path reached in the homotopy also starts and ends at x0. The homotopy class of
the path γ is denoted [γ], and the operation on the fundamental group is loop concatenation, that
is, [γ1] ∗ [γ2] is the homotopy class [γ(1,2)] where

γ(1,2)(t) =

{
γ1(2t) t ∈ [0, 1

2 ]

γ2(2t− 1) t ∈ [ 1
2 , 1]
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There are a few things to note here. The loop concatenation operation is simply first following
the first loop, then the second loop, and adjusting the ”speed” to keep the domain of the path
as [0, 1]. The identity of the fundamental group is the path e with e ≡ x0. Also, for continuous
functions f, g : X → Y, a homotopy H from f to g is a continuous function X × [0, 1] → Y such
that for all x ∈ X, H(x, 0) = f(x) and H(x, 1) = g(x). This can be thought of as a continuous
deformation from f to g. If a homotopy from X to Y exists, f and g are said to be homotopic.
This is an equivalence relation on continuous functions from X to Y, and the equivalence classes
under this relation are called homotopy classes.

The definition of the fundamental group using homotopy classes of loops instead of just loops
allows the fundamental group to have the properties of a group. If the fundamental group was
defined as a group of loops instead of as a group of homotopy classes, it would have neither as-
sociativity nor the inverse property. The inverse of a path α : [0, 1] → X is the path β such that
β(x) = α(1 − x). It should also be noted that the operation is well-defined, and does not depend
on the representative chosen for the equivalence class. For proofs, see [Hat02].

Finally, the fundamental group seems like a curious definition, because it is defined on a topolog-
ical space and a point in that space, rather than just a topological space. In fact, if for x0, x1 ∈ X
there is a path α : [0, 1] → X with α(0) = x0 and α(1) = x1, then π1(X,x0) ∼= π1(X,x1). The
group isomorphism takes [γ] ∈ π1(X,x1) to [γ′], where

γ′(t) =


α(3t) t ∈ [0, 1

3 ]

γ(3t− 1) t ∈ [ 1
3 ,

2
3 ]

α(3− 3t) t ∈ [ 2
3 , 1]

This takes a loop starting and ending at x1 and takes it to a loop starting and ending at x0 by
following a path from x0 to x1, then following the loop starting and ending at x1, then following a
path back to x0. For a proof that this is an isomorphism, see [Hat02].

Since if x0 and x1 are connected by a path, then π1(X,x0) ∼= π1(X,x1), a path connected space
X has the property that its fundamental group does not depend on base point. In this case, we
refer to π1(X) as the fundamental group of X.

We can refer to the fundamental groups of connected Riemann surfaces without specifying base
points, since they are path connected. This is because they are connected and locally path connected
and together these two properties imply path connectedness. (A space X is locally path connected
if, for all x ∈ X, for all neighborhoods U of x, there is a path-connected neighborhood V ⊂ U of x,
and Riemann surfaces satisfy this property because there are by definition neighborhoods of every
point homeomorphic to open sets in the complex plane.)

Example 1.4. The torus T has a fundamental group generated by two generators, a and b. Because
aba−1b−1 deforms to a single point (a−1 and b−1 are the paths a and b followed in the reverse
direction) the word aba−1b−1 is trivial in fundamental group for the torus. In addition, there are
no other relations on a and b. This fundamental group is in fact isomorphic to Z×Z. See Figure 2.

The fundamental group and coverings are linked by the following theorem, sometimes called the
Fundamental Theorem of Galois Theory for Covering Spaces:

Theorem 1.4. If X,Y are path connected, and p : X → Y is a regular covering, then:

(1) p∗(π1(X)) is normal in π1(Y ).
(2) The Deck group D(p), the group of automorphisms d : X → X such that p ◦ d = p, is

isomorphic to π1(Y )/p∗(π1(X)).
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Figure 2. The paths a and b are the two generators.

A covering p : X → Y is called regular if, for every loop γ : [0, 1]→ X with γ(0) = γ(1), all lifts
p̃ ◦ γ of the loop p ◦ γ in Y are loops, that is, they satisfy p̃ ◦ γ(0) = p̃ ◦ γ(1). The induced map
on the fundamental group p∗ takes [α] ∈ π1(X) to [p ◦ α] ∈ π1(Y ). This is well-defined regardless
of both base point for the fundamental group and representative for the class [α]. Also, the deck
group can be thought of as shuffling the preimages of a neighborhood under a covering.

Proof. This proof uses ideas from [Kug93].
The key observation is that the path lifting property can be used to relate elements of π1(Y ) to

elements of D(p). Given [α] ∈ π1(Y ), for each y ∈ Y let

αy0 : [0, 1]→ Y

be a representative of the class that corresponds to [α] in π1(Y, y0). Also, if p(x0) = y0, let γy0,x0
be

the unique lift of αy0 with γy0,x0(0) = x0. Then, define the map ψ : π1(Y )→ D(p) in the following
way:

ψ([α]) : X → X

x 7→ γp(x),x(1)

ψ is a group homomorphism. Its kernel is the elements [α] such that ψ([α]) is the identity, that
is, elements that lift to loops regardless of local representation. The regular covering property is
very useful in determining which elements these are, since it guarantees that any images of loops
in X under the covering map p only lift to loops in X. This holds for representatives of classes
of loops as well, so [α] ∈ kerψ iff α = p(β) for some β ∈ π1(X), which is exactly the condition
[α] ∈ p∗(π1(X)), so

kerψ = p∗(π1(X)).

The kernel of a group homomorphism is always normal, and by the First Isomorphism Theorem,

ψ(π1(Y )) = π1(Y )/ kerψ = π1(Y )/p∗(π1(X)).

All that remains to be shown is that ψ is a surjection.
To do this, let d be a deck transformation. Note d is continuous. Then, let x0, x1 ∈ X such that

d(x0) = x1. Using the path connectedness of X, let γ : [0, 1] → X be a path such that γ(0) = x0

and γ(1) = x1. Then, ψ([p ◦ γ]) = d. First, note p ◦ γ is a loop, since p(γ(1)) = p(x1) = p(d(x0)) =
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p(x0) = p(γ(0)). So, ψ([p ◦ γ]) ∈ D(p). Also, ψ([p ◦ γ])(x0) = x1, since γ is the only lift of p ◦ γ that
is x0 at 0.

In general, a deck transformation’s image at one point completely determines the entire deck
transformation. This is because, given d(x0) = x1, for all x ∈ X, there exists a path γx with
γx(0) = x0 and γx(1) = x. Then, d ◦ γx is a path from d(x0) = x1 to d(x). So, there is only one
option for d(x).

Therefore, since ψ([p◦γ]) and d are deck transformations that agree on the image of a point, they
are the same deck transformation. So d ∈ ψ(π1(Y )), so since d was arbitrary ψ(π1(Y )) = D(p).
Therefore D(p) = ψ(π1(Y ) = π1(Y )/p∗(π1(X)). �

With this theorem, we can consider normal subgroups of the fundamental group of a space Y
in correspondence with some covers X of Y . In turn, if these spaces have nontrivial fundamental
group, the normal subgroups of their fundamental groups correspond to covers of them. With the
right conditions, all of these spaces are covered by a cover with trivial fundamental group.

Example 1.5. The fundamental group of the torus C/〈1, i〉 is isomorphic to Z× Z. This group is
abelian, so all of its subgroups are therefore normal. Figure 3 shows the correspondence of various
covers of the torus with subgroups of its fundamental group. Each covering map takes a point to its
equivalence class under a quotient.

Figure 3. This shows several covers of a torus, all covered by a space (C) with
trivial fundamental group.

1.3. Universal Covers. In the previous example, C is a cover for all of the other covers of the
torus. This is a property of covering spaces with trivial fundamental group, and for this reason,
such covers are called “universal.”
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Definition 1.7 (Universal Cover). A path-connected space X is called simply connected if it has
trivial fundamental group (so every loop is homotopic to a point). A simply connected cover is called
a universal cover.

Remark. If a space has a universal cover, it has a unique universal cover.

In fact, a few connectivity conditions are sufficient for a space to have a universal cover.

Theorem 1.5. A locally path connected space X has a universal cover if and only if X is connected
and semi-locally simply connected.

X is semi-locally simply connected if for all x ∈ X, there exists a neighborhood U of x such
that every loop in U is homotopic to a single point in X. Note the homotopy is not required to
take place within U, hence the “semi-local” condition. Most even vaguely well-behaved spaces are
semi-locally simply connected - the standard counterexample is the Hawaiian earring (Figure 4),
which consists of the union of all circles in R2 that are centered at ( 1

n , 0) with radius 1
n for each

n ∈ N, with the subspace topology from the Euclidean topology on R2.

Figure 4. This space is not semi-locally simply connected, since no neighborhood
of (0, 0) has the property that all loops in the neighborhood are contractible to a
single point in the space.

Proof. This proof includes ideas from [Hat02].
First, we show that these conditions are necessary for a locally path connected space to have a

universal cover. Suppose X has a universal cover X̃, and let p : X̃ → X be the covering map.
We first show X is connected. Let x0, x1 ∈ X, and let x̃0 and x̃1 be preimages of x0 and x1

under p. Then, since X̃ is path connected, there is a path α : [0, 1] → X̃ such that α(0) = x̃0 and
α(1) = x̃1. Then, p ◦ α is a path in X from x0 to x1, so X is path connected and therefore also
connected.

Next, we show X is semi-locally simply connected. Let x ∈ X. Then, let U be an open neigh-
borhood of X such that the preimage of U is homeomorphic to U × S, where S has the discrete
topology. Then, let γ be a loop in U with γ(0) = γ(1) = x0 and lift γ to γ̃, such that γ̃(0) = x̃0

for some preimage x̃0 of x0. This lift is contained entirely in one of the copies of U in X̃, since S
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is discrete, so γ̃ is a loop. Since X̃ is simply connected, there is a homotopy H : [0, 1]× [0, 1]→ Y
such that H(x, 0) = γ̃(x), H(x, 1) is constantly x̃0, and H(0, x) = H(1, x) = x̃0 for all x. Then,
p ◦ H is a homotopy in X from γ to a single point that fixes the base point of the loop, so γ is
contractible in X and X is semi-locally simply connected.

Given a connected, locally path connected, and semi-locally simply connected space has a uni-
versal cover. Let X be such a space. The universal cover of X is constructed by taking a point
x0 ∈ X, and letting

X̃ = {[γ] | γ : [0, 1]→ X is a path with γ(0) = x0}

where the homotopy class [γ] only includes homotopies that fix the base point and final point of
the path γ. This allows for a very natural covering map p([γ]) = γ(1). See [?] for a proof that this
space is indeed a universal cover for X. �

All connected Riemann surfaces satisfy the connectivity conditions for Theorem 1.5, since each
point has a neighborhood homeomorphic to an open subset of C, so they all have universal covers.
See [IT] for a proof that the universal covers of Riemann surfaces have Riemann surface structure.
There is an immensely powerful and important theorem concerning universal covers of Riemann
surfaces, which is the main purpose of this paper.

2. The Uniformization Theorem

The Uniformization Theorem can be stated in two forms. The first form emphasizes the universal
covers and the second suggests the importance of the theorem by describing how the three universal
covers give us information about every Riemann surface.

Theorem 2.1 (The Uniformization Theorem, version 1). Up to biholomorphism, there are just

three simply connected Riemann surfaces: the complex plane C, the Riemann sphere Ĉ, and the
open disk D.

Theorem 2.2 (The Uniformization Theorem, version 2). Every connected Riemann surface X is

biholomorphic to a quotient of one of Ĉ, C, or D by the covering space action of a subgroup Γ of its
automorphism (self-biholomorphism) group.

Remark. D is biholomorphic to the upper half-plane H = {z ∈ C | Re (z) > 0}, which is sometimes
used in the statement of the Uniformization Theorem.

In the second form of the Uniformization Theorem, the term “covering space action” is defined
to be an action of a group G on a space X such that for all x ∈ X, there exists a neighborhood
U of x such that gU ∩ U 6= ∅ if and only if g is the identity. See [Hat02] for a proof that the map
p : X → X/G taking points in X to their equivalence class is a covering and that G is closely related
to the group of deck transformations. In our case, this means the second form of the Uniformization
Theorem is describing the universal cover of X. It is worth verifying that the three universal covers
are indeed meaningfully distinct.

Theorem 2.3. The three spaces Ĉ, C, and D are mutually non-biholomorphic.

Proof. Any biholomorphism is a homeomorphism, so since Ĉ is compact and C and D are not, Ĉ is
not biholomorphic to either C or D. Furthermore, any holomorphism C → D must be constant by
Liouville’s Theorem from complex analysis, so it cannot be invertible. �
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So, we can understand the complex structure on a Riemann surface by understanding the sur-
face as a quotient of one of these three Riemann surfaces by a group of its automorphisms. The
automorphisms of the three universal covers are easy to describe, and each admits a particularly
nice metric.

Theorem 2.4 (Automorphisms of the universal covers).

• The automorphisms of Ĉ are f(z) = az+b
cz+d where ad− bc 6= 0 and a, b, c, d ∈ C.

• The automorphisms of D are of the form f(z) = az+b
b̄z+ā

where |a|2−|b|2 = 1 and a, b, c, d ∈ R.
• The automorphisms of C are of the form f(z) = az + b where a, b ∈ C and a 6= 0.

For a proof, see [Bra]. For a details on the construction of the metrics on the universal covers
and quotient spaces, see [Bon09].

Definition 2.1 (Quotient Metric). Let X be a topological space, let d : X ×X → R be a metric on
X, let ∼ be an equivalence relation on X, and let [x] denote the ∼-equivalence class of x. Then, the
quotient metric d̄ : (X/ ∼)× (X/ ∼)→ R is defined such that

d̄([P ], [Q]) = inf {d(P,Q1) + d(P2, Q2) + · · ·+ d(Pn, Qn) | Qi ∈ [Pi+1]∀1 ≤ i ≤ n− 1, Qn ∈ [Q]},
if this construction makes d̄ a metric.

The metrics on Riemann surfaces are one of the miracles of Uniformization. The three universal
covers have very well-behaved and understood metrics, in particular, the three metrics all have
constant curvature. Because of natural correspondences between the automorphism and isometry
groups of the three universal covers, the quotient metrics on Riemann surfaces inherit the con-
stant curvature of the metrics on the universal covers. So, the Uniformization Theorem gives a
correspondence between complex structures and metric structures on a Riemann surface!

2.1. The Riemann-Roch Theorem. Our next goal is to understand the proof of the Uniformiza-
tion Theorem. We will use the Riemann-Roch Theorem, an important theorem about the existence
of meromorphic functions on a compact Riemann surface. To state the theorem, it is first necessary
to make some definitions.

Definition 2.2. Let X be a Riemann surface, and let p1, . . . , pd ∈ X be a set of distinct points.
Then, D = {p1, . . . , pd} is called a divisor. We define H0(D) to be the complex vector space of
meromorphic functions on X which have no poles away from D and at most simple poles in D. For
ease of notation, we define h0(D) = dimH0(D).

Definition 2.3 (Differential Forms). For a Riemann Surface X, a differential one-form is an
element of the cotangent space. A differential 1-form is a holomorphic differential form if it is rep-
resented as f(z)dz, where f is holomorphic, in every coordinate patch. A meromorphic differential
form is defined to be a holomorphic differential form except at a set of isolated points {a1, . . . , am},
where the local representation is given by g(z)dz where g is meromorphic with a pole at ai.

Remark. All holomorphic differential forms are meromorphic.

The cotangent space is defined to be the dual of the tangent space, which is an object attached to
each point that essentially consists of local objects (“point derivations”) that behave like derivatives.
In the case of Riemann surfaces, a basis for the tangent space over R is given by ( ∂∂z ,

∂
∂z̄ ), where z is

the local coordinate. The differentials dz and dz̄ are defined as the dual vectors of the corresponding
partial derivatives, so they are both linear functionals on the tangent space and

dz(
∂

∂z
) = 1
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dz(
∂

∂z̄
) = 0

dz̄(
∂

∂z
) = 0

dz̄(
∂

∂z̄
) = 1

We also define d, ∂, and ∂̄ operators on smooth functions in local coordinates. Let f be such a
function. Then, we let

df :=
∂f

∂z
dz +

∂f

∂z̄
dz̄

∂f :=
∂f

∂z
dz

∂̄f :=
∂f

∂z̄
dz̄

All 1-forms are locally of the form
f(z)dz + g(z)dz̄,

and we call a form a (1, 0)-form if g is zero and a (0, 1)-form if f is zero.
Similarly, given a one-form ω = f(z)dz + g(z)dz̄, we can define dω, ∂ω and ∂̄ω. We define

dω := df ∧ dz + dg ∧ dz̄, and ∂ω and ∂̄ω similarly, and in general, we have d = ∂ + ∂̄. See [Sch07],
Chapter 4 for details and more explanation of differential forms.

We define H0(K −D) to be the space of holomorphic 1-forms on X that vanish at every point
in D, and as before let h0(K −D) = dimH0(K −D). We are now in a position to state a form of
the Riemann-Roch Theorem:

Theorem 2.5 (Riemann-Roch, form 1). Let X be a Riemann surface of genus g, let p1, . . . , pd ∈ X
be distinct, and let D = {p1, . . . , pd} be a divisor. Then,

h0(D)− h0(K −D) = d− g + 1.

We investigate this in the case where X = Ĉ to see the limitations of this form of the theorem.
First, we check that the theorem holds in this form in this case.

Theorem 2.6. Let p1, . . . , pd ∈ Ĉ be distinct, and let D = {p1, . . . , pd} be a divisor. The Riemann-
Roch theorem holds in this case.

Proof. First, h0(D) = d+ 1. We can assume p1, . . . , pd ∈ C. Then,

H0(D) = span(1,
1

z − p1
,

1

z − p2
, . . . ,

1

z − pd
).

All functions of this form are certainly in H0(D), so we must show that all functions in H0(D)
are in this span. Indeed, let F ∈ H0(D). Then, let c1, . . . , cd be the residues of F when expressed
in z at p1, . . . , pd. Now, consider the function

f(z) = F (z)− c1
z − p1

− c2
z − p2

− · · · − cd
z − pd

where z is the canonical coordinate chart on Ĉ centered at 0.
F only has simple poles since it is in H0(D), so around every point pi, its Laurent expansion is

of the form
ci

z − pi
+

∞∑
j=0

aj(z − pi)j .
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Therefore, the Laurent expansion of f (which is meromorphic because it is the sum of meromorphic
functions) around every point pi is of the form

∞∑
j=0

aj(z − pi)j ,

so f is holomorphic near every point in Ĉ.
Therefore f is holomorphic on Ĉ, so by Theorem 1.2 f is constant. So, there exists c0 ∈ C such

that

c0 = F (z)− c1
z − p1

− c2
z − p2

− · · · − cd
z − pd

=⇒ F (z) = c0 +
c1

z − p1
+

c2
z − p2

+ · · ·+ cd
z − pd

So, H0(D) = span(1, 1
z−p1 ,

1
z−p2 , . . . ,

1
z−pd ), so h0(D) = d+ 1 = d− g + 1, since Ĉ has genus 0.

So, for the Riemann-Roch Theorem to hold in this case, we must now verify h0(K −D) = 0.

By 1.1, every meromorphic function f on Ĉ besides the zero function has the same number of
zeroes as it has poles (counting multiplicity), since a meromorphic function on Ĉ is a holomorphic

function Ĉ→ Ĉ. We use this to show a lemma about meromorphic one-forms on Ĉ.
Let ω, ω′ be two meromorphic one-forms on Ĉ, and let f = ω

ω′ . Then, f is a meromorphic
function, so it has the same number of zeroes as it has poles. Now, the number of zeroes f has is
equal to the number of zeroes of ω plus the number of poles of ω′, and the number of poles of f is
the number of poles of ω plus the number of zeroes of ω′. So,

zeroes(ω) + poles(ω′) = zeroes(ω′) + poles(ω)

=⇒ zeroes(ω)− poles(ω) = zeroes(ω′)− poles(ω′).

So, the number of zeroes minus the number of poles is constant across all (nonzero) meromorphic

one-forms on the Riemann sphere. Now, consider the meromorphic one-form dz on Ĉ. It is a
holomorphic one-form with no zeros on C. At ∞, we use a change of coordinates to understand its
behavior. Let the local coordinate at ∞ be w, and note w = 1

z . Then,

dz = d(
1

w
) = − 1

w2
dw,

so at z =∞, w = 0 and dz has a double pole. Since dz has no zeroes,

zeroes(dz)− poles(dz) = −2.

So, all meromorphic one-forms ω on the Riemann sphere that are not identically zero have

zeroes(ω)− poles(ω) = −2.

In particular, there are no holomorphic one-forms on the Riemann sphere besides the zero form, so
h0(K −D) = 0. �

The example of dz also hints at a limitation of our current approach. It has a pole with multi-
plicity greater than one, which is counted in considerations with zeroes and poles but not treated by
our current definition of divisors. The Riemann-Roch theorem is made more general and powerful
by defining divisors in a less intuitive, but more general, way [Sch07].

Definition 2.4 (Divisor, version 2). The group of divisors of a Riemann surface X is the free
abelian group generated by points of X.
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We denote divisors with a formal sum, so we write a divisor D as

D =
∑
a∈X

naa

where na ∈ Z for all a and na = 0 for all but finitely many a. We define addition of divisors
pointwise, so that the sum of two divisors D =

∑
a∈X naa and D′ =

∑
a∈X maa is

D +D′ =
∑
a∈X

(ma + na)a.

Similarly, we can define a difference between divisors, take products of a divisor with a scalar, and
so on. We also define a partial order on divisors where we say D ≥ D′ if na ≥ ma for all a ∈ X.

Some divisors are special. For instance, every nonzero meromorphic function f on X has a
divisor associated to it. The order orda(f) of f at a point a is k if f has a zero of multiplicity k
at a, −k if f has a pole of multiplicity k, and zero otherwise. The divisor associated to f , denoted
(f), is ∑

a∈X
orda(f)a.

Similarly, every nonzero meromorphic differential form ω has a divisor associated to it. Near every
point a, ω can be represented as ga(z)dz, Then, we define

orda(ω) = orda(ga)

(it can be checked that this is independent of local coordinate) and we let the divisor associated to
ω be denoted

(ω) =
∑
a∈X

orda(ω)a.

For meromorphic functions or forms a, b,

(a · b) = (a) + (b) and

(
1

a

)
= −(a).

Two divisors are said to be equivalent if their difference is (f) for some meromorphic f. All
nonzero meromorphic differential forms are equivalent since, given two such forms ω, ω′, the ratio
ω
ω′ is some meromorphic function f, so

(f) = (
ω

ω′
) = (ω)− (ω′).

The equivalence class of divisors corresponding to meromorphic one-forms is called K.
In this more general setting, the divisor D = {p1, . . . , pd} is denoted p1+· · ·+pd. We also redefine

H0(D) in a more general way using the partial ordering of the divisors. We define

H0(D) := {f meromorphic | (f) ≥ −D}

Let D,D′ be equivalent, so that D −D′ = (f) for some meromorphic f . Then, H0(D) ∼= H0(D′),
and the isomorphism is given by g 7→ f · g.

So, if D = −47p1 + 2p2 for some p1, p2 ∈ X, then all f ∈ H0(D) must have a zero of at least
order 47 at p1, can have a pole of at most order 2 at p2, and must be holomorphic on the rest of X.
So, the new definition of H0(D) is a generalization compatible with the old definition. The other
term on the left-hand side of the Riemann-Roch Theorem, H0(K −D), is defined in the same way:

H0(K −D) := {f meromorphic | (f) ≥ D − k}
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where k is taken as any representative of the divisor class K (all representatives will give the same
space, up to isomorphism). H0(K −D) is more naturally interpreted as a space of forms than as a
space of functions:

Theorem 2.7. H0(K − D) is isomorphic to the space of meromorphic differential forms ω such
that (ω) ≥ D.

Proof. Let ω0 be a nonzero meromorphic differential form, so that K is the equivalence class of
(ω0). Then, for all meromorphic forms ω, ω

ω0
is some meromorphic function f, so ω = fω0. We have

(ω) ≥ D

⇐⇒ (fω0) = (f) + (ω0) = (f) + k ≥ D

⇐⇒ (f) ≥ D − k ⇐⇒ f ∈ H0(K −D).

So, f 7→ fω0 is an isomorphism between the two spaces. �

Hence, the new definition of H0(K −D) is compatible with the previous one, and H0(K −D)
is a very natural object to consider.

We also need to reconsider one more term in the Riemann-Roch Theorem: We replace the term
d with the degree degD of the divisor D, where degD is defined as the sum of the coefficients of
points in D.

Theorem 2.8 (Riemann-Roch, more general). Let X be a compact Riemann surface of genus g,
and let D =

∑
a∈x naa be a divisor for X. Then,

h0(D)− h0(K −D) = degD − g + 1.

Remark. We can quickly adjust the proof of 2.6 to account for multiplicity, as long as there are
no terms in the divisor with negative coefficient. If the point pi has multiplicity m in the divisor,
we add the terms 1

z−pi ,
1

(z−pi)2 , . . . ,
1

(z−pi)m into the basis for H0(D) and a similar argument shows

this is a basis for H0(D), which therefore has dimension degD + 1.

In this paper, we only prove Riemann-Roch as stated in Theorem 2.5. To do this, we are interested
in constructing meromorphic functions with poles only at certain points. Following [Don11], we
start by letting X be an Riemann surface of genus g. Then, we let p ∈ X, and attempt to construct
a meromorphic function with simple pole at p and no other poles.

We can let zp be a local coordinate in a neighborhood U of p such that zp(p) = 0. Then, 1
zp

is a

meromorphic function on U with simple pole at p. To extend this function to be a global function
on X, we let B be a bump function such that B is smooth, B is 1 in a neighborhood of p, and B is
zero outside of U. Then, B · 1

zp
is a smooth function on U \ {p} that extends to a smooth function

on X \ {p} that is zero outside of U. We also use B · 1
zp

to denote the extension of this function

when unambiguous.
This function is smooth but not holomorphic on X \ {p}, so we wish to find a smooth f on X

such that f +B · 1
zp

is holomorphic. One criterion for a function to be holomorphic will be helpful.

Theorem 2.9. Let g be a smooth function on a Riemann surface X. g is holomorphic if and only
if ∂̄g = 0.
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Proof. g is of the form g(x + iy) = u(x, y) + iv(x, y), where u and v are real-valued differentiable
functions. By the Chain Rule, the partial derivative with respect to z̄ is

∂

∂z̄
=

1

2

∂

∂x
+
i

2

∂

∂y
,

so

∂̄g =
∂g

∂z̄
dz̄ =

1

2

(
∂u

∂x
+ i

∂u

∂y
+ i

∂v

∂x
− ∂v

∂y

)
.

By the Cauchy-Riemann Equations, g is holomorphic if and only if ∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x .

From the expression for ∂̄g, these are exactly the conditions for the terms in the parentheses to
cancel.

�

There is a similar theorem for anti-holomorphic functions, which we state without proof.

Theorem 2.10. Let g be a smooth function on a Riemann Surface X. g is anti-holomorphic, that
is, g is such that

ḡ : X → C

x 7→ g(x)

is a holomorphic function, if and only if ∂g = 0.

We can use Theorem 2.9 to extend ∂̄(B · 1
zp

) to a smooth (0, 1)-form on all of X. Since B ≡ 1 in

a small neighborhood V of p, and 1
zp

is holomorphic in V \ {p}, we have ∂̄(B · 1
zp

) = 0 on V \ {p}.
So, we can extend ∂̄(B · 1

zp
) to a (0, 1)-form on all of X by defining

A =

{
∂̄(B · 1

zp
) z 6= p

0 z = p

So, we now have a smooth (0, 1)−form A defined globally on X, and we are looking for a
smooth function f on X such that ∂̄(f + B · 1

zp
) = 0 on X \ {p}. So, on X \ {p}, we want

∂̄(f) = −∂̄(B · 1
zp

) = −A, and since ∂̄f is globally defined, we must have ∂̄f = −A. Since A is not

defined globally as the image of a certain function under the ∂̄ operator, it is not clear that such
f exists. Fortunately, cohomology provides us with tools that help measure whether differential
one-forms are the images of functions under differential operators.

2.2. Cohomology. The following two definitions are given in [Lov].

Definition 2.5 (Vector space complex). A vector space complex A is a (possibly finite) sequence
of vector spaces Ai connected with linear transformations di such that di+1 ◦ di = 0 for all i :

0
d−1

−−→ A0 d0−→ A1 d1−→ A2 · · ·
When there is no ambiguity, we refer to the di operators simply as d.

Im(di−1) must be a subspace of ker(di) for all i in order for the di+1 ◦ di = 0 condition to be
satisfied. This property allows us to define cohomology.
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Definition 2.6 (Cohomology). Let A be a vector space complex. Then, the kth cohomology vector
space corresponding to A, Hk, is

Hk = ker(dk)/ Im(dk−1).

Based on the type of complex, different notation will be assigned to Hk.

The reason we have gone to all the trouble of defining cohomology is because the forms on a
Riemann Surface form a complex, with the d operator as the transformations. Indeed, recall from
our definition of forms that, for a smooth f,

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄

so

d(df) = d
∂f

∂z
∧ dz + d

∂f

∂z̄
∧ dz̄ =

(
∂

∂z

∂f

∂z
dz +

∂

∂z̄

∂f

∂z
dz̄

)
∧ dz +

(
∂

∂z

∂f

∂z̄
dz +

∂

∂z̄

∂f

∂z̄
dz̄

)
∧ dz̄

Since the wedge product is alternating and bilinear, several terms cancel, and we are left with

∂

∂z̄

∂f

∂z
dz̄ ∧ dz +

∂

∂z

∂f

∂z̄
dz ∧ dz̄ =

∂f

∂z∂z̄
dz̄ ∧ dz − ∂f

∂z∂z̄
dz̄ ∧ dz = 0.

Also, the d operator annihilates all two-forms in the case of Riemann surfaces. This fact, and
the fact that d2 = 0 allows us to define a complex where the transformations are the differential
operator d.

Definition 2.7 (De Rham Complex). Let X be a Riemann Surface, and Ω0(X) be the smooth
functions on X, Ω1(X) be the smooth 1-forms fdz + gdz̄ on X, and Ω2(X) be the smooth 2-forms,
then fdz ∧ dz̄ on X,

0→ Ω0(X)
d−→ Ω1(X)

d−→ Ω2(X)
d−→ 0

is called the De Rham complex.
The associated De Rham cohomology spaces are denoted

H0
dR(X) = ker(d : Ω0(X)→ Ω1(X))

H1
dR(X) = ker(d : Ω1(X)→ Ω2(X))/ Im(d : Ω0(X)→ Ω1(X))

H2
dR(X) = Ω2(X)/ Im(d : Ω1(X)→ Ω2(X).

However, the De Rham cohomology is not precise enough for Riemann surfaces. It exists on any
smooth manifold, but ignores the additional complex structure that Riemann surfaces have. For
this reason, we use the ∂̄ operator to define other cohomology spaces. Like d, ∂̄2 = 0.

In addition to Ω0(X), Ω1(X), and Ω2(X) as defined in Definition 2.7, we define Ω0,1(X) to be
the space of (0, 1)-forms on X and Ω1,0(X) to be the space of (1, 0)-forms on X. Note ∂̄(Ω0,1(X)) =
∂̄(Ω2(X)){0}. We now define some cohomology spaces:

Definition 2.8 (Dolbeault cohomology). We define four Dolbeault cohomology vector spaces, com-
ing from the two complexes

(1) 0→ Ω0(X)
∂̄−→ Ω0,1(X)

∂̄−→ 0

(2) 0→ Ω1,0(X)
∂̄−→ Ω2(X)

∂̄−→ 0

The cohomology spaces we define are
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H0,0(X) := ker(∂̄ : Ω0(X)→ Ω0,1(X))

H0,1(X) := Ω0,1(X)/ Im(∂̄ : Ω0(X)→ Ω0,1(X))

H1,0(X) := ker(∂̄ : Ω1,0(X)→ Ω2(X))

H1,1(X) := Ω2(X)/ Im(∂̄ : Ω1,0(X)→ Ω2(X)

H0,0(X) and H0,1(X) come from the first complex and H1,0(X) and H1,1(X) come from the
second complex.

Remark. These are the only nontrivial Dolbeault cohomology spaces in the case of one complex
dimension. In higher dimensions, there is a Dolbeault space Hp,q(X) for larger p, q.

The group H0,0(X) is just the space of holomorphic functions, and the group H1,0(X) is the
space of holomorphic one-forms. However, the space H0,1(X) is in fact the main reason we made
our excursion into cohomology in the first place.

We were trying to determine whether there was a smooth function f such that ∂̄f = −A, where
−A is a given smooth (0, 1)-form. This is equivalent to the cohomology class of −A being 0 in the
space H0,1(X). A powerful theorem will let us count the dimension of H0,1(X).

Theorem 2.11 (Hodge Decomposition for Riemann Surfaces). Let X be a Riemann surface. Then,

H1
dR(X) ∼= H1,0(X)⊕H0,1(X).

We need to assume one major analysis theorem before proving this theorem.

Theorem 2.12 (Donaldson’s“Main Analysis Theorem” [Don11]). Let X be a compact Riemann
surface. If, for ρ a 2-form, there is a solution to ∂∂̄φ = ρ, then

∫
X
ρ = 0, and the solution φ is

unique up to addition of a constant. Also, if ρ is a 2-form such that
∫
X
ρ = 0, then there is a φ

such that ∂∂̄φ = ρ.

For a proof, see [Don11].
We are now ready to prove Theorem 2.11.

Proof. This proof uses ideas from [Fil].
Recall

H0,1(X) := Ω0,1(X)/ Im(∂̄ : Ω0(X)→ Ω0,1(X))

and

H1,0(X) := ker(∂̄ : Ω1,0(X)→ Ω2(X)).

We first show the space H0,1(X) is isomorphic to the space Ω1(X) of anti-holomorphic one-

forms, that is, one-forms that are represented as g(z)dz̄ in each coordinate chart where z 7→ g(z)

is a holomorphic function. Let ω ∈ Ω1(X), and note since ω is a (0, 1)-form, [ω] is an element of
H0,1(X). Consider the map

i : Ω1(X)→ H0,1(X)

ω 7→ [ω]

We have that i is an isomorphism. First, it is an injection, since if [ω] = 0 in H0,1(X), then there
is a smooth f such that ∂̄f = ω. Then, ∂∂̄f = ∂ω = 0. This is because in every local coordinate,
∂ω is ∂g

∂zdz ∧ dz̄ for anti-holomorphic g and, by Theorem 2.10, ∂g
∂z = 0. By Theorem 2.12, f must
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be constant, as the solution to ∂∂̄φ = 0 must be unique up to addition by a constant and φ ≡ 0 is
one solution. Since f is constant, ∂̄f = ω = 0. So, ker i is trivial, so i is injective.

Next, i is a surjection. Let [θ] ∈ H0,1(X). Then, we are looking for an anti-holomorphic one-form
ω such that ω = θ + ∂̄φ for some smooth φ. By Theorem 2.10, this is equivalent to

0 = ∂ω = ∂θ + ∂∂̄φ.

So, we wish to show there is φ such that ∂∂̄φ = −∂θ, and since∫
X

−∂θ =

∫
δX=∅

−θ = 0

by Stokes’ Theorem, such φ exists by Theorem 2.12. So, i is surjective.
Therefore Ω1(X) ∼= H0,1(X).
Next, we show

H1,0(X)⊕ Ω1(X) ∼= H1
dR(X).

Consider the following map:

v : H1,0(X)⊕ Ω1(X)→ H1
dR(X)

v(ω1, ω2) = [ω1 + ω2]

v is an isomorphism.
First, v is injective. Suppose [ω1 + ω2] = 0. Then, ω1 + ω2 = df for some smooth f on X. Since

ω1 is a (1, 0)-form and ω2 is a (0, 1)-form, this means ω1 = ∂f and ω2 = ∂̄f. So, by Theorem 2.10,
∂ω2 = 0, so ∂∂̄f = 0. Therefore, by Theorem 2.12, f must be a constant function. So, ∂f = ∂̄f = 0,
so ω1 = ω2 = 0.

So, ker v is trivial, so v is injective. Next, we show v is surjective.
Let [α] ∈ H1

dR(X), so that we must have dα = 0. Then, in every local coordinate, α is represented
as a1(z)dz+a2(z)dz̄ for smooth a1, a2. Let the form represented as a1(z)dz in every local coordinate
be α1, and let the form represented as a2(z)dz̄ in every local coordinate be α2.

Since α1 is a (1, 0)-form and α2 is a (0, 1)-form, we have dα1 = ∂̄α1 and dα2 = ∂α2. So, by
Stokes’ Theorem, ∫

X

∂̄α1 =

∫
X

∂α2 = 0.

So, by Theorem 2.12, there exist smooth f1, f2 such that ∂∂̄f1 = ∂̄α1 and ∂∂̄f2 = −∂α2.
So, we have

∂(∂̄f2 + α2) = 0

and

∂̄(∂f1 + α1) = 0

(for the latter, note ∂∂̄ = −∂̄∂) so ∂̄f2 + α2 ∈ Ω1(X) and ∂f1 + α1 ∈ H1,0(X). Therefore,

v(∂f1 + α1, ∂̄f2 + α2) = [α+ ∂f1 + ∂̄f2]

is in the image of v. So, if we can show ∂f1 + ∂̄f2 is of the form df for some smooth f , we will show
v is surjective.

Since

0 = dα = dα1 + dα2 = ∂̄α1 + ∂α2,

we have

∂∂̄(f1 − f2) = ∂̄α1 + ∂α2 = 0
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so by Theorem 2.12, f1−f2 is a constant function. Therefore there exists c ∈ C such that f1 = f2+c.
Then,

df1 = ∂f1 + ∂̄f1 = ∂f1 + ∂̄(f2 + c) = ∂f1 + ∂̄f2.

Therefore ∂f1 + ∂̄f2 is equivalent to 0 in the de Rham cohomology, so

v(∂f1 + α1, ∂̄f2 + α2) = [α+ ∂f1 + ∂̄f2] = [α]

and v is surjective.
So, v is an isomorphism, and H1,0(X) ⊕ Ω1(X) ∼= H1

dR(X). Because H0,1(X) ∼= Ω1(X), this
gives

H1,0(X)⊕H0,1(X) ∼= H1
dR(X).

�

In fact, we can quickly determine one more important relation involving the spaces in the Hodge
Decomposition.

Theorem 2.13. Let X be a compact Riemann surface. Then, H1,0(X) ∼= H0,1(X).

Proof. We have H1,0(X) is the space of holomorphic one-forms, and that H0,1(X) is isomorphic to

the space Ω1(X), the space of anti-holomorphic one-forms. The map

c : H1,0(X)→ Ω1(X)

ω 7→ ω̄

is an isomorphism, since it is an invertible linear transformation. So, H1,0(X) ∼= Ω1(X) ∼= H0,1(X).
�

So, we have dimH1,0(X) = dimH0,1(X) = 1
2 dimH1

dR(X). By relating the de Rham cohomology
to a new homology, related to simplices, we will be able to use these results to determine the
dimension of H0,1(X).

Definition 2.9 (n-simplex). Let (v0, v1, . . . , vn) be an (n + 1)-tuplet of points in Euclidean space
such that v1 − v0, v2 − v0, . . . , vn − v0 is linearly independent. Then, the n-simplex determined by
them is [v0, v1, . . . , vn] and is the smallest convex set containing v0, v1, . . . , vn.

The condition “convex” means that for any two points p1, p2 in the n-simplex, every point on
the line segment between p1 and p2 is in the n-simplex, and the condition “smallest” means every
other set satisfying the other conditions for an n-simplex is a superset of the n-simplex.

The 0-simplices are points, the 1-simplices are line segments, the 2-simplices are triangles, the 3-
simplices are tetrahedra, and the other simplices are higher-dimensional analogues of these spaces.
The linear independence condition prevents any degeneracy (like, for instance, a “tetrahedron”
with four coplanar vertices) in the simplex. All simplices inherit the subspace topology from the
euclidean space, and in fact all n-simplices are homeomorphic to the n-ball. For more discussion,
see [?]. We can use simplices to understand any topological space X by defining simplices in X.

Definition 2.10 (Singular n-simplex). Let X be a topological space. A singular n-simplex in X is
the image σ([v0, . . . , vn]) of a continuous map

σ : [v0, . . . , vn]→ X

where [v0, . . . , vn] is an n-simplex.

As with divisors, we define formal sums on singular n-simplices to get a space of interest.
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Definition 2.11 (Singular n-chains). We define Cn(X,C), the space of singular n-chains, to be
the space of formal sums ∑

a

gaa

where all but finitely many terms are zero, the coefficients ga are elements of C, and the sum is
over singular n-simplices a in X.

A boundary operator on singular n-chains allows chains to have structure similar to a complex:

Definition 2.12 (Boundary map). We define the boundary map δn : Cn(X,C) → Cn−1(X,C)
by defining it on singular n-simplices and letting it be linear on Cn(X,C). Let σ([v0, . . . , vn]) be a
singular n-simplex. Then, we define

δn(σ([v0, . . . , vn])) =

n∑
i=0

(−1)iσ([v0, . . . , vi−1, vi+1, . . . , vn]).

We have δn−1 ◦δn = 0 (see [Hat02] for a proof), so we can define a complex moving in the reverse
direction:

0
δ0←− C0(X,C)

δ1←− C1(X,C)
δ2←− C2(X,C)

δ3←− · · ·

This gives a homology, not cohomology:

Definition 2.13 (Singular homology). We define the nth singular homology space as

Hn(X,C) := ker(δn)/ Im(δn+1)

Especially important is the space H1(X,C), as it is closely related to the genus of X. In Figure 2,
the two generators of the fundamental group are also a basis for H1(X,C), and, in general, the
dimension of H1(X,C) is twice the genus of a space. This is sometimes even taken to be the
definition of genus.

As the name suggests, cohomology is dual to homology, and there is a dual singular cohomology.

Definition 2.14. Consider the complex

0
δ∗0−→ C0(X,C)∗

δ∗1−→ C1(X,C)∗
δ∗2−→ C2(X,C)∗

δ∗3−→ · · ·

made up of dual spaces and dual maps to the “reverse complex” for singular homology. The nth
singular cohomology space is defined as

Hn(X,C) := ker(δ∗n)/ Im(δ∗n−1)

In the case where X is a compact Riemann surface of genus g, H1(X,C) has dimension 2g, and
H1(X,C) is isomorphic to its dual space Hom(H1(X,C),C), which therefore also has dimension
2g. The map from H1

dR(X) to Hom(H1(X,C),C) is constructed as follows. Let [ω] ∈ H1
dR(X),

then we map [ω] to the element of Hom(H1(X,C),C) that takes, a 1-chain [C1], to
∫
C1
ω. This is

well-defined by Stokes’ theorem and the definitions of de Rham cohomology and singular homology.
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Indeed, for every smooth function f and 2-chain C2 :∫
C1+δC2

ω + df =

∫
C1+δC2

ω +

∫
C1+δC2

df =

∫
C1+δC2

ω +

∫
δ(C1+δC2)

f =

∫
C1+δC2

ω

=

∫
C1

ω +

∫
δC2

ω =

∫
C1

ω +

∫
C2

dω

=

∫
C1

ω.

So, this map has the same output for different representatives of homology and cohomology classes.
De Rham’s Theorem says this map is actually an isomorphism.

Theorem 2.14 (De Rham’s Theorem). Let X be a compact Riemann surface. Then,

H1
dR(X) ∼= Hom(H1(X,C),C).

See [GH94] for a proof of Theorem 2.14. As a result we now know that the dimension of H1
dR(X)

is 2g, where g is the genus of X, as dimH1(X,C) = dim Hom(H1(X,C),C) = 2g. Furthermore,
from Theorem 2.11, H1

dR(X) ∼= H1,0(X) ⊕ H0,1(X) and by Theorem 2.13, H1,0(X) ∼= H0,1(X)
therefore, we get that dimH0,1(X) = g.

3. Riemann’s Existence Theorem and Final Proofs

We can now show another theorem, which will be instrumental in our proof of Riemann-Roch.
Along the way, we will show the Uniformization Theorem in the genus 0 case.

Theorem 3.1 (Riemann’s Existence Theorem). Let X be a compact Riemann surface. There is a
nonconstant meromorphic function on X.

Recall, for a Riemann surface X of genus g, we had constructed a smooth function B · 1
zp

on

X \ {p} and with a pole at p, and we were looking for a smooth f on X such that f + B · 1
zp

is holomorphic. This came down to finding smooth f such that ∂̄f = −A for a globally defined
(0, 1)-form A.

Theorem 3.2. Let X be a Riemann surface of genus 0. X is biholomorphic to the Riemann sphere
Ĉ.
Proof. If g = 0, then dimH0,1(X) = 0, so

H0,1(X) = Ω0,1(X)/ Im(∂̄ : Ω0(X)→ Ω0,1(X)) = {0}
so every globally defined (0, 1)-form is in the image of the ∂̄ operator on the smooth functions

on X. Therefore in the genus 0 case, there is a smooth function f such that ∂̄f = −A.
This means f +B · 1

zp
is holomorphic on X \{p} (as ∂̄(f +B · 1

zp
) = 0), and since B · 1

zp
increases

without bound near p, f +B · 1
zp

is a meromorphic function on X \ {p} with one simple pole at p.

Therefore

f +B · 1

zp
: X → Ĉ

is a nonconstant holomorphic function, so by Theorem 1.1 f +B · 1
zp

is a ramified cover of Ĉ. Since

f + B · 1
zp

has just one pole of order 1, ∞ has one preimage of multiplicity 1, and therefore all

points in Ĉ have exactly one preimage under this map. Therefore f + B · 1
zp

is a biholomorphism

between X and Ĉ. �
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In particular, X is a quotient of Ĉ by the trivial group, so X follows form 2 of the Uniformization
Theorem.

For surfaces X of genus g > 0, it takes a little more work to guarantee a nonconstant meromorphic
function on X, as there are now (0, 1)-forms on X that are not images of smooth functions under
the ∂̄ operator. We get around this problem by adding more poles to our meromorphic function.

Let p1, . . . , pg+1 be distinct points in X. For each pi, let Ui be a neighborhood of pi on which
zi is a coordinate chart such that zi(pi) = 0. Then, as when we were constructing B · 1

zp
, for each

1 ≤ i ≤ g+ 1, let Bi be a smooth bump function on X such that Bi ≡ 0 outside of U and Bi = 1 in
a neighborhood Vi of pi. Then, Bi · 1

zi
is smooth on Ui and can be extended outside of Ui by zero

to be smooth on X. Also, Bi · 1
zi

is holomorphic on Vi \ {p}, so ∂̄(Bi · 1
zi

) is zero on Vi \ {p}, so we

can extend ∂̄(Bi · 1
zi

) to a smooth global (0, 1)-form on X, which we call Ai.

Now, since [Ai] ∈ H0,1(X) for each 1 ≤ i ≤ g+1, and dimH0,1(X) = g, there exist λ1, . . . , λg+1 ∈
C, not all zero, such that

−λ1[A1]− · · · − λg+1[Ag+1] = 0.

By the definition of H0,1(X), there exists some smooth f on X such that

∂̄f = −λ1A1 − · · · − λg+1Ag+1.

Then,

M := f + λ1B1
1

z1
+ · · ·+ λg+1Bg+1

1

zg+1

is an meromorphic function on X with poles only in {p1, . . . , pg+1}, and with all of these poles
simple. Indeed, ∂̄(M) = 0 everywhere away from the pi for which λi 6= 0, so M is holomorphic
away from finitely many points, which are its poles, so M is in fact meromorphic. Since M has
some poles (as there are nonzero λi), M is nonconstant. This concludes the proof of Riemann’s
Existence Theorem.

3.1. Proof of Riemann-Roch. We now are ready for our proof of Riemann-Roch, as stated in
Theorem 2.5. We will use ideas from [Don11].

Let X be a compact Riemann surface of genus g, and let D = {p1, . . . , pd} be a divisor of X, such
that the pi are all distinct elements of X. We will first investigate H0(D), the space of meromorphic
functions on X with all poles simple and in D, which we will eventually relate to H0(K −D), the
space of holomorphic one-forms on X that vanish at every point in D.

It would be nice to be classify elements of H0(D) by their behavior in D. For motivation, let

D = {p1, . . . , pd} be a divisor of Ĉ such that D ⊂ C and consider H0(D). By the definition of Ĉ (the

complex plane with a point at infinity) there are two canonical coordinates z : Ĉ \ {∞} = C → C
where z is the identity map on C, and w : Ĉ \ {0} → C where w = 1

z on the overlap. Then,
a meromorphic function is determined, up to addition by a constant, by its residues in these
local coordinates. Indeed, from the proof of Theorem 2.6, if c1, . . . , cd are the residues of some
meromorphic F, when expressed in z, at p1, . . . , pd, then the function

f(z) = F (z)− c1
z − p1

− c2
z − p2

− · · · − cd
z − pd

is constant on Ĉ. So, the residues, when expressed in z, do indeed determine F on the entire surface.
However, suppose we defined a different local coordinate z′ : C→ C such that z′ = 2z. Then, a

function g : C → C such that g(z) = 1
z would now be expressed g(z′) = 2

z′ , and the residues of g

with respect to z and z′ are different. This is an even greater problem with surfaces that are not Ĉ,
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where there is no canonical coordinate and we might not even know the nature of the coordinate
charts. We circumvent this problem by defining a new notion of residue.

Definition 3.1 (Tangent Residue). Let z be a local coordinate on a compact Riemann surface X,
let z(p) = 0, and let f be a meromorphic function on X with Laurent expansion at p

f(z) =
∑
i=−1

aiz
i.

Then, we define the tangent residue of f at p to be Resp f = a−1
∂
∂z ∈ TpX, where TpX is the

tangent space of X at p.

In this and what follows, we consider the tangent space as a complex vector space, which has
complex dimension 1 and basis ∂

∂z , where z is a local coordinate.
The notion of “residue” is now well-defined, regardless of local coordinate, and meromorphic

functions with only simple poles are still determined, up to addition by a constant, by these residues.
Let D = {p1, . . . , pd} be a divisor on a compact Riemann Surface X, and let f1, f2 ∈ H0(D) such
that Respi f1 = Respi f2 for all 1 ≤ i ≤ d. Then, f1 and f2 differ by a holomorphic function, which
is constant by Theorem 1.2.

This gives a map

R : H0(D)→
d⊕
i=1

TpiX

taking a function f to the d-tuplet of its tangent residues. Now, consider the following sequence:

0→ C I−→ H0(D)
R−→

d⊕
i=1

TpiX

where I is an injective inclusion map taking c ∈ C to the function fc ≡ c. This is therefore a complex,
since R ◦ I = 0. Furthermore, the associated cohomology group kerR/ Im I is trivial, as kerR is
exactly the space of holomorphic functions on X, which is just the constants by Theorem 1.2, so
kerR = Im I.

We would like to determine the value h0(D) = dimH0(D). By the Rank-Nullity Theorem, we
have

dimH0(D) = dim kerR+ dim ImR = dim Im I + dim ImR = 1 + dim ImR.

So, we now investigate ImR.

We define a map from
⊕d

i=1 TpiX to H0,1(X) such that its kernel is dim ImR. For each 1 ≤ i ≤ d,
let Ai : TpiX → H0,1(X) be a linear map that, for a local coordinate zi of pi, takes ∂

∂z to the

cohomology class of the global (0, 1)-form Ai, the extension of ∂̄(Bi · 1
zi

), as defined in the proof of
Riemann’s Existence Theorem. Ai is then extended over the rest of TpiX to be linear. The image

Ai(λi ∂
∂zi

) = λi[Ai], where Ai is defined in terms of the local coordinate zi, is independent of choice
of local zi.

Next, we define A :
⊕d

i=1 TpiX → H0,1(X) such that, for any (t1, . . . , td) ∈
⊕d

i=1 TpiX,

A(t1, . . . , td) =

d∑
i=1

Ai(ti)
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Now, we have A ◦R = 0, since given meromorphic f ∈ H0(D),

A ◦R(f) =

d∑
i=1

λi[Ai],

such that λi
∂
∂zi

is the tangent residue of f at pi for each 1 ≤ i ≤ d. Then, consider the function

F = f −
d∑
i=1

λiBi ·
1

zi
.

F has no poles on X by the definition of tangent residue and since f only has simple poles, all
in D, so F is smooth on X. Therefore,

[∂̄F ] = [∂̄(f −
d∑
i=1

λiBi ·
1

zi
)] = 0

in H0,1(X).
Note since f is holomorphic away from the pi, ∂̄f = 0 on X \D. We can extend ∂̄f to be zero

on all of X.
Then,

[∂̄f ]−
d∑
i=1

λi[Ai] = [∂̄f ]− [

d∑
i=1

∂̄(λiBi ·
1

zi
)] = 0

in H0,1(X), so

A ◦R(f) =

d∑
i=1

λi[Ai] = 0

and ImR is a subspace of kerA.
Furthermore, we actually have ImR = kerA. Let Λ = (λ1

∂
∂z1

, . . . , λd
∂
∂zd

) ∈ kerA. Then, we
have

d∑
i=1

λ1[A1] = 0,

so by the definition of H0,1(X) there exists some smooth g on X such that ∂̄g = −λ1A1−· · ·−λdAd.
Then, ∂̄(g + λ1B1 · 1

z1
+ · · ·+ λdBd · 1

zd
) = 0, so

G := g + λ1B1 ·
1

z1
+ · · ·+ λdBd ·

1

zd

has all of its poles simple and in D and is holomorphic away from its poles, so G ∈ H0(D). Also,
R(G) = Λ. So, kerA is a subspace if ImR. So, ImR = kerA. Since, from our above rank-nullity
claim, we have dimH0(D) = 1 + dim ImR, we have

dimH0(D) = 1 + dim kerA.

We also have dim
⊕d

i=1 TpiX = d, since each tangent space has complex dimension 1. So, using
facts from linear algebra,

d− dim kerA = dim ImA = dimH0,1(X)− dim(ImA)⊥ = dimH0,1(X)− dim kerA∗

=⇒ dim kerA = d− dimH0,1(X) + dim kerA∗

where A∗ is the dual map or transpose of A.
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By the way dual spaces interact with the direct sum, we have (
⊕d

i=1 TpiX)∗ with
⊕d

i=1 T
∗
piX,

where T ∗piX is the cotangent space attached to pi. We also want to associate a space to (H0,1(X))∗

to better understand (H0,1(X))∗. Consider the following construction, which identifies H1,0(X)
with (H0,1(X))∗ :

Given a one-form α ∈ H1,0(X), we let α correspond to the element of (H0,1(X))∗ that takes
the class of forms [θ] ∈ H0,1(X) to

∫
X
α ∧ θ. We abuse notation and consider α as a function in

(H0,1(X))∗, writing α([θ]) =
∫
X
α ∧ θ. This expression is well-defined, regardless of representative

for the class [θ], since if [θ′] = [θ], we have that there exists smooth f such that θ′ = θ+ ∂̄f. Then,
we have

α([θ′]) =

∫
X

α ∧ θ′ =

∫
X

α ∧ (θ + ∂̄f) =

∫
X

α ∧ θ +

∫
X

α ∧ ∂̄f

= α([θ]) +

∫
X

d(α ∧ f)

= α([θ]) +

∫
δX=∅

α ∧ f = α([θ])

(We have α ∧ ∂̄f = d(α ∧ f) since, because α is a holomorphic 1-form, ∂α ∧ f, ∂̄α ∧ f, and α ∧ ∂f
all vanish. The next line follows from this by Stokes’ Theorem.) This shows the correspondence
between H1,0(X) and (H0,1(X))∗ is well-defined. It is shown in [Don11] that this correspondence
defines an isomorphism.

So, we can consider A∗ as a map from H1,0(X) to
⊕d

i=1 T
∗
piX. We are now able to relate kerA∗

to one of the key terms in Riemann-Roch.

Theorem 3.3. We have kerA∗ = H0(K −D).

Proof. Let α ∈ H1,0(X) and consider α as an element of (H0,1(X))∗ as above. We consider the
conditions for A∗(α) = 0. A∗(α) is the functional that takes an element

(t1, . . . , td) ∈
d⊕
i=1

TpiX

to

α(A(t1, . . . , td)).

Since each tangent space has complex dimension 1, each ti must actually be λi
∂
∂zi

for some λi ∈ C.
Since A∗(α) is linear, we have that A∗(α) vanishes on all vectors in

⊕d
i=1 T

∗
piX if and only it

vanishes on all vectors ∂
∂zi
. So, we consider

A∗(α)(
∂

∂zi
).

This is equal to

α ◦ A(
∂

∂zi
) = α([Ai]) =

∫
X

α ∧Ai.

In the local coordinate zi, let α be represented as g(zi)dzi. Recall that Ai is the extension of
∂̄(Bi

1
zi

) for some smooth bump function Bi, and that zi is defined such that zi is 0 at pi. Let U
be a neighborhood of pi such that Bi is 1 on U. Then, let γ be a path in U around p. Then, γ
partitions X into two regions, that is, X \γ has two connected components. Let C be the connected



THE UNIFORMIZATION THEOREM 25

component of X \ γ containing pi, so pi ∈ C ⊂ U. We have that γ is the boundary for both C and
X \ C. Then, we have, using Stokes’ theorem,

α([Ai]) =

∫
X

α ∧Ai

=

∫
X\C

α ∧Ai +

∫
C

α ∧Ai

=

∫
X\C

α ∧ ∂̄(Bi ·
1

zi
) +

∫
C

α ∧ ∂̄(Bi ·
1

zi
)

=

∫
δ(X\C)=γ

Bi ·
1

zi
α+

∫
δC=γ

Bi ·
1

zi
α

= 2

∫
γ

Bi ·
1

zi
α

= 2

∫
γ

1

zi
α

= 2

∫
γ

g(zi)

zi
dzi.

So we have

d(Bi
1

zi
α) = α ∧ d(Bi

1

zi
)−Bi

1

zi
dα

= α ∧ ∂(Bi
1

zi
) + α ∧ ∂̄(Bi

1

zi
)−Bi

1

zi
∂α−Bi

1

zi
∂̄α

= α ∧ ∂̄(Bi
1

zi
)

= α ∧Ai,

since α is a holomorphic (1, 0)-form, allowing us to apply Stokes’ Theorem.
By the Residue Theorem, the integral

2

∫
γ

g(zi)

zi
dzi

evaluates to 2(2πig(0)). So, α([Ai]) vanishes if and only if g(0) = 0, which occurs exactly when α
is 0 at pi. So, A∗(α) = 0 if and only α vanishes on all [Ai]’s, equivalent to the condition that α
vanishes at every pi. So, α ∈ kerA∗ if and only if α ∈ H0(K −D). �

Now, combining the two dimension relations

dimH0(D) = 1 + dim kerA

dim kerA = d− dimH0,1(X) + dim kerA∗

gives

dimH0(D) = 1 + d− dimH0,1(X) + dim kerA∗

= d− g + 1 + dimH0(K −D)

So,

h0(D)− h0(K −D) = 1 + d− g.
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The Riemann-Roch Theorem is proved.

3.2. Proof of Uniformization. We conclude with a proof of the Uniformization Theorem, follow-
ing [Don11]. Note we have already dealt with the case where X is compact and simply connected.

In this case, X is of genus 0, so X is biholomorphic to Ĉ by Theorem 3.2.

Theorem 3.4 (The Uniformization Theorem, version 3). Let X be a non-compact simply connected
Riemann Surface. Then, X is biholomorphic to either C or D.

Proof. We look to construct a map f : X → Ĉ such that f is injective and proper. That is, f is
injective and inverse images under f of compact sets are compact. We use a similar theorem to
Theorem 2.12 to show the following result.

Lemma 3.1. Let X be a simply connected, non-compact Riemann surface. If ρ is a form on X
with compact support and such that

∫
X
ρ = 0, then there exists a smooth function φ on X such that

∂∂̄φ = ρ and, for any ε > 0, there is a compact subset K ⊂ X such that |φ(x)| < ε on X \K. (That
is,“φ tends to 0 at infinity in X”).

For a proof of Lemma 3.1 see [Don11]. We also will also need the Riemann Mapping Theorem.

Lemma 3.2 (Riemann Mapping Theorem). Let U be a simply connected proper subset of C. Then,
there is a biholomorphism b : U → D.

For a proof of Lemma 3.2 see [Fil]. — Now we put all of our results together to demonstrate the

existence of the desired injective, proper map f : X → Ĉ.
Let p ∈ X, and let z be a local coordinate on a neighborhood U of p such that z(p) = 0. Then, as

in the proof of Riemann’s Existence Theorem, let B be a bump function such that B is identically
1 on a smaller neighborhood of p, and B is compactly supported with support entirely within U.
Then, B · 1

z has a pole at p but is not meromorphic. Again, let A = ∂̄(B · 1
z ) on X \{p}, and extend

A to be a global (0, 1)-form since A is 0 in a neighborhood of p.
Then, ρ = ∂A is a (1, 1)-form with compact support, as ∂A vanishes outside the support of B.

Then, ∫
X

ρ =

∫
X

∂A =

∫
X

dA = 0,

by Stokes’ Theorem. By Theorem 3.1, there is a smooth g on X such that ∂∂̄g = ρ and g tends to
zero at infinity in X. Now, consider the 1-form

a = (A− ∂̄g) +A− ∂̄g.

a is twice the real part of A − ∂̄g, so a is a real one-form. Then, we have d(A − ∂̄g) = 0, since
∂(A − ∂̄g) = ∂A − ∂∂̄g = 0 and A − ∂̄g is a (0, 1)-form, so ∂̄(A − ∂̄g) also vanishes. Similarly, we

have d(A− ∂̄g) = 0. So, da = 0.
Because X is simply connected, its 1st singular homology group is trivial, so by Theorem 2.14,

we have H1
dR(X,R) = 0. This theorem was stated with both the singular homology and the de

Rham cohomology defined over the complex numbers, but it still holds true when they are defined
over the reals. The de Rham cohomology over the reals is defined where complex-valued smooth
functions are replaced with real-valued smooth functions, complex one-forms are replaced with real
one-forms, and so on.

Then, since da = 0 and a is a real one-form, we have [a] = 0 in H1
dR(X,R). By the definition of

H1
dR(X,R), there is a real-valued smooth function ψ on X such that a = dψ. Then, A− ∂̄g = ∂̄ψ,
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because the left is the (0, 1)-form component of a and the right is the (0, 1)-form component of dψ.
So,

∂̄(B · 1

z
− (g + ψ)) = 0.

Let f = B · 1
z − (g + ψ). Now, f is meromorphic with one simple pole at p, since it is holomorphic

away from p by Theorem 2.9, and it has simple pole behavior at p. Furthermore, the imaginary
part of f tends to 0 at infinity in X. This is because B · 1

z and g tend to zero at infinity in X and
ψ is real-valued.

Now, consider the spaces H+ = {z ∈ C | im z > 0} and H− = {z ∈ C | im z < 0}. We also
define X+ = f−1(H+) and X− = f−1(H−), along with f+ : X+ → H+ and f− : X− → H− the
(respective) restriction maps. Since f is continuous, X+ and X− are open. Also, f+ and f− are
holomorphic maps.

Now, f+ and f− are proper maps. Suppose B is a compact subset of H+. Then, there is ε > 0
such that im z > ε for all z ∈ K. Using an argument from [Fil], suppose f−1

+ (B) did not have

compact closure. Then, we would have a sequence an in f−1
+ (B) such that im f(an) approaches

0 as n approaches ∞, since the imaginary part of f tends to 0 at infinity in X. This violates the
condition of a positive lower bound on im z, so f−1

+ (B) must have compact closure. Since H+ is

Hausdorff, B must be closed, so f−1
+ (B) is closed and therefore equals its closure, which is compact.

So f+ is proper. A similar argument shows f− is also proper. Because f+ and f− are proper maps,
they are ramified covers of their images [Don11], Proposition 7.

Since f has a simple pole at p, there is a neighborhood of∞ in the image of f. This neighborhood
must intersect both H+ and H−, so both X+ and X− are nonempty. So, both f+ and f− are ramified
coverings with degree at least 1, possibly infinite. We show the degree in fact must be 1.

Suppose to the contrary f+ has degree at least 2. Then, using the fact that the imaginary part
of f tends to 0 at infinity, let K be a compact subset of X such that im f < 1 on X \ K. Then,
for each positive integer n, there is xn, yn such that f+(xn) = f+(yn) = ni and xn = yn only if
f ′+(xn) = 0 (that is, xn and yn are distinct unless they are a branch point for f+). The sequences
(xn) and (yn) are contained within K, so there is a convergent subsequence of both (xn) and (yn),
converging to limits x, y. Since f+ is continuous, we must have f+(x) and f+(y) equal ∞, since
(f+(xn)) and (f+(yn)) approach ∞. This means, since f+ has one pole at p, x = y = p and there
are sequence elements of both (xn) and (yn) arbitrarily close to p. This violates the simple pole
behavior of f at p, as it either violates injectivity or the condition that the derivative of f cannot
vanish in a neighborhood of p.

So, f+, and f− by a similar argument, are ramified coverings of degree 1 and therefore bijections.
We now show f is injective on its entire domain. Suppose there were two points x1 6= x2 in X such
that f(x1) = f(x2). Then, we must have f(x1) ∈ R, since f only has one preimage for points in

H+ ∪H− ∪{∞}. But, then there is a neighborhood Uf(x1) of f(x1) ∈ Ĉ such that there are disjoint
neighborhoods U1 of x1 and U2 of x2 such that f(U1) and f(U2) both contain Uf(x1). Then, Uf(x1)

contains elements of H+, so U1 and U2 both contain preimages of H+, contradicting the fact that
f is injective on H+. So, f must be injective.

So, f is a biholomorphism from X to f(X). We also have H+ ∪H− ∪ {∞} ⊂ f(X). So,

Ĉ \ f(X) ⊂ R.

Since X is simply connected, f(X) is simply connected, so Ĉ \ f(X) is connected and therefore is

some interval I ⊂ R. Furthermore, f attains the value ∞ in Ĉ, so f attains a neighborhood of ∞
and therefore there is an upper and lower bound on points in I. So, I is an interval of finite length.
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Because f(X) must be open, I must be closed, so we have I = [a, b] for some a ≤ b ∈ R. — Notice
I must be nonempty since X is not compact. Therefore we conclude by considering two cases.

Case 1: If a = b, then X is biholomorphic to f(X), which is the Riemann sphere with one point
removed and therefore biholomorphic to the complex plane, where the biholomorphism is
given by an automorphism of the Riemann Sphere that shifts the point removed from the
Riemann Sphere to ∞.

Case 2: If a < b, then f(X) is biholomorphic to a proper subset of the complex plane, given by
an automorphism that shifts one of the points removed to ∞. In this case the Riemann
Mapping theorem, Theorem 3.2, guarantees that f(X) is biholomorphic to D, so X is
biholomorphic to D.

In one case, X is biholomorphic to C. In the other case, X is biholomorphic to D. The Uni-
formization theorem is proved. �
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