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Abstract

The phase retrieval problem is a fascinating but challenging inverse problem that arises in
molecular imaging methods such as X-ray crystallography, ptychography, and other diffraction
imaging techniques. The physics of the diffraction process dictates that measurements observed
are squared magnitude of the Fourier transform of the diffracted signal’s amplitudes. Because
distinct signals can have the same magnitude, different phase factors can generate multiple
solutions for the same problem. Many phase recovery algorithms used in practice are heuristic in
nature, and so have no mathematical assurances of obtaining a correct solution. We use discrete
Fourier analysis in conjunction with spectral analysis of strategically constructed, circulant-
like matrices to recover the phase accurately and efficiently. We explore the 1-dimensional
phase retrieval problem – recovering a signal x ∈ CN – to build the 2-dimensional analog:
reconstructing a signal X ∈ CN1×N2 . We present our new theoretical results as well as empirical
simulations verifying the accuracy and efficiency of the proposed framework.

1 Introduction

1.1 Motivation

The research presented in this paper concerns methods of mathematically recovering a signal – a
quantity encoding amplitude and phase information – from indirect measurements. For instance,
we want to recover a signal x ∈ CN , but due to some underlying physical process, represented by a
transformation T : CN → CM , we can only quantitatively observe a vector y such that

|Tx| = y ∈ RM ,

where | · | is considered component-wise. Thus, solely real-valued, magnitude-only measurements
are physically detectable, and hence, phase information is lost. Phase encodes critical information
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Figure 1: Merging phase from Dearborn image and magnitude from Ann Arbor image

regarding the structure of an object, as Figure 1 demonstrates, when reconstructing an accurate,
detailed image. We use the following definition for phase.

Definition 1.1.1. Let z ∈ C. The phase of z is the complex exponential eiθ such that z = |z|eiθ,
where |z| is the modulus or amplitude of z and θ ∈ R/2πZ. For a vector x ∈ CN , the vector of
phases is

x

|x|
=


|x0|eiθ0/|x0|

|x1|eiθ1/|x1|
...

|xN−1|eiθN−1/|xN−1|

 =


eiθ0

eiθ1

...

eiθN−1

 ,

where ÷ and | · | are defined component-wise.

The motivating application for phase recovery methods presented in this paper stems from ptychog-
raphy, a coherent diffraction imaging (CDI) technique widely used in molecular imaging to reveal the
underlying structure of a specimen of interest, like cells, viruses, or nanocrystals. An electromagnetic
wave is said to be diffracted if any perturbation of the propagating wave from a straight-linear path
cannot be described as reflection or refraction [6]. In the ptychographic setting, the measurement
apparatus utilizes a transmitter of illumination, such as light, X-rays, or electron beams, to radiate
the sample and produce several diffraction patterns which appear as light and dark spots within a
detection field. Processing the measurements of the signals’ diffracted amplitudes, imaging scientists
then use a mathematical algorithm to transform the data into an image of the microscopic structure
[9].

Measuring multiple (at least 2) interference patterns differentiates ptychography from many other
imaging techniques, and the strategy is known to bolster mathematically the performance of phase
retrieval algorithms to obtain a unique solution. The measurement apparatus generates these collec-
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tions of diffraction patterns by the use of a moving probe or window function often called the mask.
The mask’s physical and mathematical characteristics are known or can be calculated; in particular,
the mask is often designed to be support restricted. To have local support means mathematically
that the nonzero components of the mask’s signal will be significantly smaller than the size N of the
signal diffracted from the sample. This ensures that the radiation source, guided by the mask, will
illuminate small sections of the sample at time. So, mathematically speaking, each measurement,
a sum of diffracted amplitudes from the sample and mask, will also be locally supported. Thus, to
reconstruct an image, the mask is moved or shifted to gather several measurements encompassing
the whole sample [9, 13]. Such locally supported masks are labeled bandlimited.

The mathematics of diffracted amplitudes of a propagating wave u(x, y, z; t) in space (x, y, z) ∈ R3

and time t ∈ R derives from a solution to the wave equation

∆u(x, y, z; t) = k2 ∂
2

∂t2
u(x, y, z; t),

where ∆ is the spatial Laplacian and k2 is a parameter determined by the medium of propagation and
the speed of light in a vacuum. The physics of the diffraction process dictates that only intensity I,
squared-magnitude measurements, of the signal is physically observable. Based on setup parameters
of the ratio of the signal’s wavelength to the distance from the illumination source to the detection
field, measurements can be calculated by the Fraunhofer approximation,

I ∝
∣∣∣∣∫∫

R2

u(x, y, 0; t)e−
2πi
zλ (xξ1+yξ2) dx dy

∣∣∣∣2 = |F [u(x, y, 0; t)]|2 ,

where F is the 2-dimensional Fourier transform, λ is the wavelength of the electromagnetic ray, and
ξ1, ξ2 represent the Fourier or frequency domain variables in the detection field, sometimes referred
to abstractly as the Fraunhofer plane [6]. Thus, in the ptychographic setting, intensity observables
are squared-magnitude Fourier measurements and contain no phase information. For our purposes,
we will assume the proportional constant is 1.

1.2 Background and Statement of 1D and 2D Problem

This REU project examined the prospects of developing a phase retrieval algorithm for 2-dimensional
signals that is computationally efficient, robust, and that allows analysis to produce mathematical
assurances of obtaining a correct solution – still an open question for 2-dimensional phase retrieval.
The strategy is to extend the 1-dimensional results of Perlmutter et al. in [8] to the 2-dimensional
case, where we represent discretized signals as matrices X ∈ CN1×N2 . In the one-dimensional setting,
where there is much traction for mathematical phase recovery, the specimen under study or the mask
is considered to have only one axis of movement for shifts, whereas in the two-dimensional setting,
shifts can be either horizontal or vertical. (See Figures 2 and 3.) In practice, however, physicists
generally require two- and/or three-dimensional frameworks. Therefore, with some exceptions1,
practitioners in the field view 1-dimensional phase retrieval as a mathematical toy problem.

The origins of the phase retrieval problem trace back to X-ray crystallography in the 1940s; yet in
1953, phase reconstruction methods effected a watershed moment in biology and medical science
when Watson and Crick employed such algorithms to uncover the double helix structure of DNA
[9]. Nevertheless, even today critical obstacles remain in obtaining flawless phase retrieval, such
as computational efficiency and robustness to noise or measurement error, which exacerbate the

1Audio speech processing, for example, is a 1D phase problem [1]
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Figure 2: 1D Diffraction measurement setup

indeterminable qualities inherent in the ill-posed phase retrieval problem [10]. Take for example a
simple system of linear equations over C.

Motivating Example.

3x1 − (2i)x2 = 3− 3i

x1 + (1− i)x2 = 4− 2i
(1.1)

It can easily be shown that the unique solution is x = [x1 x2]T = [1 + i 3]T . On the other hand,
taking the modulus or magnitude of these equations shows that the system

|3x1 − (2i)x2|2 = |3− 3i|2

|x1 + (1− i)x2|2 = |4− 2i|2

is now nonlinear, and plus, no longer has a unique solution. Because the magnitude ‖x‖ = ‖xeiθ‖
for any θ ∈ R\2πZ, a solution is unique only up to a global phase factor of eiθ. In other words, the
nonlinear system

|3(x1e
iθ)− 2i(x2e

iθ)|2 = |3− 3i|2

|(x1e
iθ) + (1− i)(x2e

iθ)|2 = |4− 2i|2

has an infinite number of solutions. Moreover, in the signal processing setting, signals which have
been circularly shifted, time-reversed, or have the same auto-correlation function also have the same
Fourier magnitude [1].

Since the inception of the phase retrieval problem, the imaging science community has discovered
many mathematical methods to overcome these ill-posed complications. Nonetheless, state of the
art, 2-dimensional phase retrieval algorithms used in practice tend to be heuristic in nature, thus
lacking the needed mathematical framework to provide assurances of recovering the precise phase
and induce analysis for the robustness of solutions obtained. Two main classes of these algorithms
used for phase retrieval are alternating projections (AP) and semi-definite programming (SDP).
Introduced in 1972 by Gerchberg and Saxton in the pioneering paper [4], the AP method entails
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projecting the phase retrieval problem and its constraints onto a convex set and using well-established
convex optimization techniques to solve the problem. But because the constraints of the problem are
not actually convex, the iterative GS algorithm has no theoretical guarantee of obtaining a correct
solution, let alone a unique one, and more problematically, it is known to converge to local optima.
In 1982, Fienup modified the GS algorithm for 2-dimensional phase retrieval with the hybrid input-
output (HIO) method in [3]. HIO showed marked improvement as the algorithm showed empirically
to avoid local optima. However, there is still no proof that HIO converges, and it also fails to perform
in the presence of high noise or measurement error.

Figure 3: 2D Diffraction measurement setup;
Adapted2 with permission from [5]© The Optical
Society

SDP realizes that Fourier intensity measure-
ments establish a system of quadratic equations
that can be linearized or lifted into a higher di-
mension. Then for an observed signal x ∈ CN ,
the method minimizes the rank of the matrix
X = xx∗ generated by the diffraction measure-
ments with a projection onto the set of posi-
tive semi-definite, rank 1 matrices. Rank min-
imization is an extremely difficult combinato-
rial problem despite its convex constraints, but
one convex adjacent strategy, PhaseLift, tries to
minimize the trace norm ‖X‖Σ instead of the
rank of the matrices generated from the mea-
surements. In general, the number of measure-
ments needed for phase recovery by this method
must be proportional to the square of the sig-
nal size, and thus, lifting the dimension signif-
icantly increases the computation time. There
do exist robustness and recovery guarantees for
PhaseLift, and there are many interesting mathematical results from it, including a novel graph-
theoretic approach by Singer in [11]. However, the physical constraints of the diffraction apparatus
setup needed to satisfy the algebraic structure of the PhaseLift algorithm are severely infeasible in
practice [1].

Unlike the many algorithmic variations of AP and SDP used in practice, the 1-dimensional method
by Perlmutter et al. [8] avoids costly iterations altogether, instead relying on the mathematical
properties of Fourier analysis. Thus, this paper explores the 1-dimensional case and the mathematical
foundation of phase retrieval method Algorithm 1 (p. 37) adapted from [8]. We then build the 2-
dimensional analog by presenting the underlying mathematics and theory corroborating Algorithm
2 (pp. 38, 39), phase retrieval in 2 dimensions.

2 1D Phase Retrieval

2.1 Preliminaries and Notation

Given the finite nature of measurement data collected, the natural setting for the mathematics for
signal recovery is discrete Fourier analysis. So, first we introduce suitable notation and conventions
used for the 1-dimensional case. Discretized, 1-dimensional signals are represented as vectors x ∈ CN
with circular, i.e. modular, indexing: for n ∈ ZN , the complex component xn is the element of x

2This use of copyrighted material is not specifically endorsed by the authors of [5] or OSA Publishing.
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evaluated at an nth spatial position. So, with slight abuse of notation, we let the integer n imply
the equivalence class [n] modulo N . We can also think of x as a function fx : ZN → C that assigns
a point n ∈ ZN in the admitting electromagnetic field a complex sinusoid xn ∈ C. If the signal is
periodic, we say

Definition 2.1.1. An N-periodic signal x ∈ CN is a sequence of complex numbers {xn}n∈Z such
that xn+N = xn for all n ∈ ZN .

Including definition 1.1.1, these additional conventions are used: the symbol i =
√
−1, the absolute

value or modulus operation | · | is considered component-wise for a vector or matrix quantity, and
the notation (y)k refers to the kth element of vector y. Two critical transformations, the discrete
Fourier transform (DFT) and inverse discrete Fourier transform (IDFT), allow us to interchangeably
maneuver between discrete spatial (or time) domain n and discrete frequency domain j, also known
as the Fourier mode.

Definition 2.1.2. Let x ∈ CN and n, j ∈ ZN . The Discrete Fourier Transform FN : CN → CN
and Inverse Discrete Fourier Transform F−1

N : CN → CN are defined as

x̂j = (FNx)j :=

N−1∑
n=0

xne
−2πinj
N

xn = (F−1
N x)n :=

1

N

N−1∑
j=0

x̂je
2πinj
N .

Table 1 contains elementary operations on signals used throughout the 1-dimensional work. Unless
otherwise noted, all indexing of signals x,h ∈ CN in the table are implied to be modulo N .

Operation Definition

Complex Conjugate x

Time Reversal x̃n := x−n

Circular Shift in Time Operator
S` : CN → CN

(S`x)n := xn−`

Modulation Operator
Wk: CN → CN

(Wkx)n := xne
− 2πikn

N

Hadamard (Element-wise) Product (x ◦ h)n := xnhn

Circular Convolution
~N : CN × CN → CN

(x ~N h)n :=

N−1∑
k=0

xkhn−k

Table 1: 1D Elementary Operations

We now look at the governing measurements equation in the ptychographic setting. Let x ∈ CN
be the signal of the unknown sample and the mask m ∈ CN , and let Y ∈ RN×L contain the N · L
real-valued, phaseless measurements, where L is the total number of shifts of the mask. Therefore,
our objective for 1-dimensional phase retrieval is to recover x from the intensity measurements of
the diffracted amplitudes of x and m, which are the squared-magnitude Fourier measurements
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Yj,` =

∣∣∣∣∣
N−1∑
n=0

xnmn−`e
−2πinj
N

∣∣∣∣∣
2

+ ηj,`, for n, j, ` ∈ ZN , (2.1)

where ηj,` ∈ R represents random noise or measurement error for each entry of Y and shift ` of the
mask. Observe that we strategically populate the measurements matrix Y so that the `th column
is the `th shift of the mask and the kth row is the kth Fourier mode of column vector y` ∈ CN .
Furthermore, using precise notation, we can also state that

Yj,` =
∣∣∣(FN (x ◦ S`m))j

∣∣∣2 + ηj,`. (2.2)

For mathematical convenience, we ignore the noise term η in proofs and, if needed, assume each
entry Yj,` is a noisy measurement.

2.2 Mathematical Foundation for Algorithm 1

The goal of this section is to provide the theoretical foundation for the 1-dimensional phase retrieval
method of Algorithm 1, provided by mentor Dr. Aditya Viswanathan and co-author of the 1-
dimensional case work in [8]. The 3 lemmas and consequent theorem presented here are also featured
in [8], but we provide our own proofs as well as consequences of the results. First, we state without
proof well-known properties, largely taken from [12] (except Properties 1(iv.) and 1(viii.) whose
proofs are left for Appendix A), of the 1-dimensional DFT and other elementary operations on
signals.

Properties 1. Let x,h ∈ CN be arbitrary signals and α, β ∈ C scalars. Then for all n, j, k, ` ∈ ZN ,
the following properties hold:

i. (FN (αx + βh))j = αx̂j + βĥj

ii. (FN (S`x))j = (W`x̂)j

iii. (FN x̃)j = ̂̃xj = ˜̂xj
iv. (S̃`x)n = (S−`x̃)n

v. (FN (h ~N x))j = (ĥ ◦ x̂)j

vi. (FN (h ◦ x))j =
1

N
(ĥ ~N x̂)j

vii. (FNx)j = x̂j = ˜̂xj
viii. (FN (FNx))j = (FN x̂)j = Nx̃j.

We show the following lemmas and definitions to aid in the proof of main theoretical results, Theorem
1 and Corollary 1.

Lemma 2.2.1. Let x ∈ CN and j, ` ∈ ZN , then

(FN (x ◦ S`x))j =
1

N
e
−2πij`
N (FN (x̂ ◦ Sjx̂))−`.
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Proof.

(FN (x ◦ S`x))j =
1

N
[x̂ ~N (FN (S`x))]j (by Property 1(vi.))

=
1

N

(
x̂ ~N (W`x̂)

)
j

(by Property 1(ii.))

=
1

N

N−1∑
k=0

x̂k(W`x̂)j−k

=
1

N

N−1∑
k=0

x̂kx̂j−ke
−2πi(j−k)`

N

=
1

N
e
−2πij`
N

N−1∑
k=0

x̂kx̂j−ke
2πik`
N

=
1

N
e
−2πij`
N

N−1∑
k=0

x̂k
˜̂xk−je 2πik`

N . (by Property 1(vii.))

Noting that the time reversal of the time reversal of a signal is the original signal, i.e.

˜̃xn = x−(−n) = xn,

we can use Property 1(vii.) to rewrite the term ˜̂xk−j :
˜̂
x = F̃Nx =

˜̂̃
x = x̂.

So, we have

(FN (x ◦ S`x))j =
1

N
e
−2πij`
N

N−1∑
k=0

x̂kx̂k−je
2πik`
N

=
1

N
e
−2πij`
N

N−1∑
k=0

x̂kx̂k−je
−2πik(−`)

N

=
1

N
e
−2πij`
N

N−1∑
k=0

(
x̂ ◦ Sjx̂

)
k
e
−2πik(−`)

N

=
1

N
e
−2πij`
N (FN (x̂ ◦ Sjx̂))−`. (by def. of DFT)

Lemma 2.2.2. Let x ∈ CN be the unknown signal to be recovered and the mask m ∈ CN known.
Let y` ∈ RN be the `th column vector of measurements matrix Y , as defined by equation (2.1),
corresponding to the `th shift of m. Then, for any k ∈ ZN ,

(FN (FNy`))k = N
[
FN (x ◦ Skx) ◦ FN (m̃ ◦ S−km̃)

]
`
.

Proof. The measurements equation (2.2) tells us that
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y` = |FN (x ◦ S`m)|2 = [FN (x ◦ S`m)] ◦ [FN (x ◦ S`m)].

First, we show that we can rewrite the conjugate term as NF−1
N (x◦S`m). For j ∈ ZN , we can write

(FN (x ◦ S`m))j =

N−1∑
n=0

xnmn−`e
−2πinj
N

=

N−1∑
n=0

xnmn−`e
2πinj
N

= N

(
1

N

N−1∑
n=0

xnmn−`e
2πinj
N

)
= N

(
F−1
N (x ◦ S`m)

)
j

= N
(
F−1
N (x ◦ S`m)

)
j
.

So, with this result, we see that

(y`)j =
[
(FN (x ◦ S`m)) ◦N(F−1

N (x ◦ S`m))
]
j
.

Using Properties 1(vi.) and 1(viii.), we take the DFT,

FNy` =
1

N
[FNFN (x ◦ S`m)] ~N [N(x ◦ S`m)] (by Property 1(vi.))

=
1

N
[N(x ◦ S`m)
:

] ~N [N(x ◦ S`m)] (by Property 1(viii.))

= N [(x̃ ◦ S̃`m) ~N (x ◦ S`m)]

= N [(x̃ ◦ S−`m̃) ~N (x ◦ S`m)]. (by Property 1(iv.))

By the definition of convolution,

(FNy`)k = N

N−1∑
n=0

x̃n(S−`m̃)nxk−n(S`m)k−n

= N

N−1∑
n=0

x̃nxk−nm̃n+`(S`m)k−n

= N

N−1∑
n=0

x̃nxk−nm̃n+`(S̃`m)n−k

= N

N−1∑
n=0

x−nxk−nm̃n+`(S−`m̃)n−k. (by Property 1(iv.))

By substitution, let p = −n. The indexing set for p ∈ ZN in the summation becomes {−(N −
1),−(N − 2), . . . ,−1, 0} which is equivalent to {0, 1, . . . , N − 1} because each element is considered
modulo N . So, we have
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(FNy`)k = N

N−1∑
p=0

xpxk+pm̃−p+`(S−`m̃)−p−k

= N

N−1∑
p=0

[xp(S−kx)p][m̃−p+`(Skm̃)−p+`]

= N

N−1∑
p=0

(x ◦ S−kx)p(m̃ ◦ Skm̃)`−p

= N
[
(x ◦ S−kx) ~N (m̃ ◦ Skm̃)

]
`
. (by def. of convolution)

So, given that

(FNy`)k = N
[
(x ◦ S−kx) ~N (m̃ ◦ Skm̃)

]
`
, (2.3)

we use Property 1(v.) and take one final DFT to yield

FN (FNy`) = N
[
FN (x ◦ S−kx) ◦ FN (m̃ ◦ Skm̃)

]
.

Note that for measurements equations (2.1), (2.2) and the previous lemmas, there were no assump-
tions on the total number L of shifts of the mask m. But for our main result, Theorem 1, we want
to look at a sub-sample of equally spaced shifts such that

` ∈
{

0,
N

L
,

2N

L
, . . . ,

(L− 1)N

L

}
.

First, we define a uniform, sub-sampling operator and prove a lemma concerning undersampled
signals.

Definition 2.2.3. Let x ∈ CN be a 1-dimensional signal and L ∈ N such that L divides N . Then,
the uniform sub-sampling operator ZL : CN → CN/L is defined as

(ZLx)n := xnL, ∀n ∈ ZN/L.

Lemma 2.2.4 (Aliasing). Let x ∈ CN be arbitrary and suppose L ∈ N divides N . Then, for any
j ∈ ZN/L,

(
FN/L(ZLx)

)
j

=
1

L

L−1∑
p=0

x̂j−pN/L.

Proof. By definitions 2.2.3 and of the DFT,

(
FN/L(ZLx)

)
j

=

N
L −1∑
n=0

xnLe
−2πinj
N/L

10



=

N
L −1∑
n=0

(
1

N

N−1∑
k=0

x̂ke
2πi(nL)k

N

)
e
−2πinj
N/L (by def. of IDFT)

=
1

N

N−1∑
k=0

x̂k

N
L −1∑
n=0

e
2πin(k−j)

N/L

=
1

N

N−1∑
k=0

x̂k
N

L
δk−j mod N/L

=
1

L

N−1∑
k=0

x̂kδk−j mod N/L.

The Kronecker delta function here is defined as

δk−j mod N/L =

{
1, if k = j mod N/L

0, otherwise.

Because the indexing set for the above summation is for k ∈ {0, 1, . . . , N−1} and thus has cardinality
N , and we have that L divides N , then there must be exactly L values that satisfy δk−j mod N/L = 1.
So, let p ∈ ZN . We can rewrite the Kronecker delta function as

δk−j mod N/L =

{
1, k = j − pN/L,
0, otherwise.

Therefore, we have

(
FN/L(ZLx)

)
j

=
1

L

L−1∑
p=0

x̂j−pN/L.

This interesting result tells us that if a subset of some (periodic) signal x ∈ CN is uniformly sampled
in the spatial domain, then the DFT of the uniformly sub-sampled signal ZLx ∈ CN/L yields an
overlapping of x̂ Fourier modes. Thus, in the frequency domain, we can no longer distinguish between
the high-frequency sinusoids from the low-frequency sinusoids of the original signal x. To see this
clearly, we let w = ZLx and take the DFT:

ŵj =
1

L

(
x̂j + x̂j−N/L + x̂j−2N/L + · · ·+ x̂j−(L−1)N/L

)
.

This overlapping, a sum of the high and low Fourier modes j ∈ ZN/L of x̂, caused by undersam-
pling is known as aliasing. Aliased signals can present mathematical difficulties for phase retrieval,
particularly when data measurements recorded are non-bandlimited and thus can prevent successful
reconstruction of the original signal [6]. For observing masked measurements, knowledge of aliasing
can be pertinent, because it is not ideal, or perhaps impossible, to take all possible N shifts of the
mask to illuminate the specimen. Thus, the bandlimited parameter of the mask aids in minimizing
the number of shifts and, more importantly, eases numerical calculations for phase retrieval. So, we
now formalize definitions for the support and bandlimited parameter δ of the mask.

Definition 2.2.5. Let x ∈ CN with components xn for all n ∈ ZN . Then, the support of x,
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denoted supp(x), is defined as the set

supp(x) := {n ∈ ZN : xn 6= 0}.

If the mask m is δ-bandlimited for δ ∈ ZN , then

supp(m) = {0, 1, . . . , δ − 1}.

We now come to the main theoretical results from [8] which provide the basis of Algorithm 1.

Theorem 1 (Perlmutter et al. ’19). Let x ∈ CN be the signal of the unknown sample and the
bandlimited mask m ∈ CN a known quantity. And for some L which divides N , let Y ∈ RN×L
contain N · L noisy measurements of the form (2.1). Then, for any ω ∈ ZL and k ∈ ZN ,

(
FL(FNY )T

)
ω,k

=
L

N2

N
L −1∑
p=0

(
FN

(
x̂ ◦ Sω−pLx̂

))
k

(
FN

(
m̂ ◦ SpL−ωm̂

))
k
.

Proof. In the proof of Lemma 7, we showed equation (2.3):

(FNy`)k = N
[
(x ◦ S−kx) ~N (m̃ ◦ Skm̃)

]
`
.

With slight abuse of notation, we will also use the symbol FN as the matrix representation of the
N -period DFT. So, by FNY ∈ CN×L, we imply the matrix multiplication of FN on each `th column
of the measurements matrix Y . Thus, we can write the (k, `) entry of FNY as

(FNY )k,` = N [(x ◦ S−kx) ~N (m̃ ◦ Skm̃)]`,

or, equivalently, taking the transpose yields

((FNY )T )`,k = N [(x ◦ S−kx) ~N (m̃ ◦ Skm̃)]`.

Define u ∈ CN as u = N [(x ◦ S−kx) ~N (m̃ ◦ Skm̃)]. If we take ` at L equally spaced shifts such
that L divides N , then u` corresponds to the `th sub-sampled element for

` ∈
{

0,
N

L
,

2N

L
, . . . ,

(L− 1)N

L

}
.

Now, we want to take the L-period DFT of the column vectors of the matrix (FNY )T ∈ CL×N .
Let (FL(FNY )T )ω,k denote the the ωth mode of the kth column vector of FL(FNY )T ∈ CL×N for
ω ∈ ZL and k ∈ ZN . Then, by definition 2.2.3, we can now write

(FL(FNY )T )ω,k = (FL(ZN/Lu))ω.

Then by Lemma 2.2.4, with N/L replacing L,
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(FL(ZN/Lu))ω =
1

N/L

N
L −1∑
p=0

û
ω−p N

N/L

=
L

N

N
L −1∑
p=0

ûω−pL

=
L

N

N
L −1∑
p=0

N [FN (x ◦ S−kx)]ω−pL[FN (m̃ ◦ Skm̃)]ω−pL (by Lemma 2.2.2)

= L

N
L −1∑
p=0

[FN (x ◦ S−kx)]ω−pL[FN (m̃ ◦ Skm̃)]ω−pL.

By the definition of time reversal, we then have

(FL(FNY )T )ω,k = L

N
L −1∑
p=0

[FN (x ◦ S−kx)]ω−pL[FN (m̃ ◦ Skm̃)]
:

pL−ω

= L

N
L −1∑
p=0

[FN (x ◦ S−kx)]ω−pL[FN ( ˜̃m ◦ S̃km̃)]pL−ω (by Property 1(iii.))

= L

N
L −1∑
p=0

[FN (x ◦ S−kx)]ω−pL[FN ( ˜̃m ◦ S−k ˜̃m)]pL−ω (by Property 1(iv.))

= L

N
L −1∑
p=0

[FN (x ◦ S−kx)]ω−pL[FN (m ◦ S−km)]pL−ω.

Therefore, by Lemma 2.2.1, we have

(
FL(FNY )T

)
ω,k

= L

N
L −1∑
p=0

1

N
e
−2πi(ω−pL)(−k)

N

[
FN

(
x̂ ◦ Sω−pLx̂

)]
k
·

1

N
e
−2πi(pL−ω)(−k)

N

[
FN

(
m̂ ◦ SpL−ωm̂

)]
k

=
L

N2

N
L −1∑
p=0

e
2πi(ω−pL)k

N e
−2πi(ω−pL)k

N

[
FN

(
x̂ ◦ Sω−pLx̂

)]
k

[
FN

(
m̂ ◦ SpL−ωm̂

)]
k

=
L

N2

N
L −1∑
p=0

(
FN

(
x̂ ◦ Sω−pLx̂

))
k

(
FN

(
m̂ ◦ SpL−ωm̂

))
k
.

We began with measurements as defined by equation (2.2) where the Fourier intensity of the
diffracted amplitudes from the signal x and the mask m are intertwined as the Hadamard product

13



of x and shifts of m. So, observe the 2 critical consequences of Theorem 1: (1) we can decouple
quantities of the unknown signal x from m; and (2) we can write 2 Fourier transforms of the mea-
surements in matrix Y as a linear combination of the known quantity FN (m̂ ◦ SpL−ωm̂), which

leaves us to simply solve for FN (x̂ ◦ Sω−pLx̂), an altered quantity of the signal we want to recover.
The following corollary shows we can further simplify the new linear system and, as discussed in the
next section, will allow us to strategically construct special matrices for Algorithm 1 to recover the
desired phase information.

Corollary 1. Assume x,m ∈ CN and L ∈ N as in Theorem 1. If m̂ is δ-bandlimited, i.e.
supp(m̂) = {0, 1, . . . , δ − 1}, and L = 2δ − 1, then for any ω ∈ ZL and k ∈ ZN , the summation in
Theorem 1 collapses to exactly one of two terms:

N2

L

(
FL(FNY )T

)
ω,k

=


(
FN (x̂ ◦ Sωx̂)

)
k

(
FN (m̂ ◦ S−ωm̂)

)
k
, if ω ∈ Zδ(

FN (x̂ ◦ Sω−Lx̂)
)
k

(
FN (m̂ ◦ SL−ωm̂)

)
k
, if ω ∈ ZL\Zδ.

(2.4)

Proof. We want to find the conditions under which the intersection supp(m̂) ∩ supp(SpL−ωm̂) 6= ∅
or equivalently when m̂ ◦ SpL−ωm̂ 6= 0. To satisfy this criterion, note that this intersection is
nonempty if and only if |pL − ω| ≤ δ − 1, the maximal shift within support restrictions of m̂.
Because |supp(m̂)| = |supp(SpL−ωm̂)| = δ, a shift greater than δ − 1 will cause the support sets to

be disjoint, and hence the element-wise product m̂◦SpL−ωm̂ = 0. So, for the nonempty intersection,
we have

−(δ − 1) ≤ pL− ω ≤ δ − 1

ω − (δ − 1) ≤ pL ≤ ω + δ − 1

ω − (δ − 1)

L
≤ p ≤ ω + δ − 1

L
ω − (δ − 1)

2δ − 1
≤ p ≤ ω + δ − 1

2δ − 1
.

So, we look at when ω = 0 and ω = δ − 1. For ω = 0,

− δ − 1

2δ − 1
≤ p ≤ δ − 1

2δ − 1

−1 < − δ − 1

2δ − 1
≤ p ≤ δ − 1

2δ − 1
< 1.

And if ω = δ − 1,

δ − 1− (δ − 1)

2δ − 1
≤ p ≤ δ − 1 + δ − 1

2δ − 1

0 ≤ p ≤ 2δ − 2

2δ − 1

0 ≤ p ≤ 2δ − 2

2δ − 1
<

2δ − 2

2δ − 2
= 1.

Because p ∈ ZN/L is an integer, the bounds −1 < p < 1 imply p = 0 for all ω ∈ Zδ. Now, we look
at ω = δ,
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δ − (δ − 1)

2δ − 1
≤ p ≤ δ + δ − 1

2δ − 1
1

2δ − 1
≤ p ≤ 1

0 <
1

2δ − 1
≤ p ≤ 1.

And for ω = L− 1 = 2δ − 2,

2δ − 2− (δ − 1)

2δ − 1
≤ p ≤ 2δ − 2 + δ − 1

2δ − 1
2δ − 1

2δ − 1
≤ p ≤ 3δ − 3

2δ − 1

1 ≤ p ≤ 3δ − 3

2δ − 1
≤ 3δ − 3

2δ − 2

1 ≤ p ≤ 3

2
.

Thus, the bounds 0 < p ≤ 3
2 imply p = 1 for all ω ∈ ZL\Zδ. Therefore, the summation in Theorem

1 collapses to the desired terms.

2.3 Angular Synchronization and Algorithm 1

Recall the linear system (1.1) from the motivating example:

3x1 − (2i)x2 = 3− 3i

x1 + (1− i)x2 = 4− 2i.

When we take the modulus of each equation, the linear system expands to the nonlinear one,

9|x1|2 + 6ix1x2 − 6ix1x2 + 4|x2|2 = 18

|x1|2 + (1 + i)x1x2 + (1− i)x1x2 + 2|x2|2 = 20.

In addition, there are now several unknown values but only 2 equations; hence, the difficulty in
finding a unique solution still remains. Suppose we are able to obtain 2 more equations which,
in practice, would correspond to obtaining more measurements or gleaning more information from
numerical data. We then can linearize, or lift, the system by treating |x1|2, x1x2, x1x2, |x2|2 as our
unknowns. Thus, such a linear system is solvable and has a unique solution (assuming invertibility
of the coefficients matrix):

9 6i −6i 4

1 1 + i 1− i 2

4 2 2 1

1 −1 −1 1




|x1|2

x1x2

x1x2

|x2|2

 =


18

20

29

5

 =⇒


|x1|2

x1x2

x1x2

|x2|2

 =


2

3 + 3i

3− 3i

9

 .

To recover x = [x1 x2]T , we rearrange the vector of new linear variables into a square matrix X:
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
|x1|2

x1x2

x1x2

|x2|2


rearrange−−−−−−→ X =

|x1|2 x1x2

x1x2 |x2|2

 = xx∗.

Note that our new matrix X is rank 1, because it is the outer product of x and x∗. Therefore,
recovering the vector (or signal) x = [x1 x2]T is a matter of finding the leading eigenvector of X
(other eigenvectors will have eigenvalues equal to 0):|x1|2 x1x2

x1x2 |x2|2

x1

x2

 = xx∗x = ‖x‖2x eigenvector−−−−−−−→
λ=‖x‖2

x =

1 + i

3

 .
This is an eigenvector-based synchronization approach to recovering phase information which mirrors
steps in SDP algorithms like PhaseLift. Now, because we look at masked measurements, many of
the entries of the rank 1 matrix X = xx∗ will be replaced by zeros, prompting us to use phase or
angular synchronization to recover the signal. Indeed, angular synchronization is the critical step in
Algorithm 1 (as well as Algorithm 2 for 2D phase retrieval), and its implementation is based on the
bandlimited parameter δ of the mask m and a sufficient number of shifts L of the mask as required
by Corollary 1.

So, recall from Corollary 1 that supp(m̂) = {0, 1, . . . , δ − 1}, which implies |supp(m̂)| = δ, and that
L = 2δ − 1. Additionally, for all k ∈ ZN , and after one IDFT, we can recover the vector quantity
x̂ ◦ Sω−pLx̂ from (2.4):

x̂ ◦ Sωx̂ =
N2

L
F−1
N

 (FL(FNY )T )ω

FN

(
m̂ ◦ S−ωm̂

)
 , ∀ω ∈ Zδ

x̂ ◦ Sω−Lx̂ =
N2

L
F−1
N

 (FL(FNY )T )ω

FN

(
m̂ ◦ SL−ωm̂

)
 , ∀ω ∈ ZL\Zδ

where division is component-wise and (FL(FNY )T )ω ∈ CN denotes the ωth row vector of the matrix.
The Hadamard product of x̂ and shifts of x̂ is analogous to the solution of the lifted system in the
opening example generated by X. So, we want to strategically rearrange the terms x̂ ◦ Sω−pLx̂ into
a circular banded system that resembles the rank 1 matrix x̂x̂∗. However, some off-diagonal bands
of this matrix will be all zeros due to support parameters of m̂. So, we define a banded matrix
operator Tδ.

Definition 2.3.1. Let A ∈ CN×N with row and column indices i, j ∈ ZN , respectively. Then, we
define the banded matrix operator Tδ : CN×N → CN×N with respect to parameter δ ∈ ZN as

(TδA)ij :=

{
Aij , if i− j (mod N) < δ

0, otherwise
.

To better visualize the matrix Tδ(x̂x̂∗), we let N = 8, δ = 3, and L = 2δ − 1 = 5. By Corollary
1, these parameters imply shifts ω − pL = −2,−1, 0, 1, 2. Now, with L = 5 recovered vectors, we
construct the matrix using a circular banded structure:
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x̂ ◦ S−2x̂

x̂ ◦ S−1x̂

x̂ ◦ S0x̂

x̂ ◦ S1x̂

x̂ ◦ S2x̂

arrange−−−−−→



|x̂0|2 x̂0x̂1 x̂0x̂2 0 0 0 x̂0x̂6 x̂0x̂7

x̂1x̂0 |x̂1|2 x̂1x̂2 x̂1x̂3 0 0 0 x̂1x̂7

x̂2x̂0 x̂2x̂1 |x̂2|2 x̂2x̂3 x̂2x̂4 0 0 0

0 x̂3x̂1 x̂3x̂2 |x̂3|2 x̂3x̂4 x̂3x̂5 0 0

0 0 x̂4x̂2 x̂4x̂3 |x̂4|2 x̂4x̂5 x̂4x̂6 0

0 0 0 x̂5x̂3 x̂5x̂4 |x̂5|2 x̂5x̂6 x̂5x̂7

x̂6x̂0 0 0 0 x̂6x̂4 x̂6x̂5 |x̂6|2 x̂6x̂7

x̂7x̂0 x̂7x̂1 0 0 0 x̂7x̂5 x̂7x̂6 |x̂7|2



= Tδ(x̂x̂∗).

Observe that the squared magnitude components of x̂ are along the main diagonal; the Hadamard
product of x̂ with positive shifts of x̂ begin under the main diagonal; the product with negative
shifts above the main diagonal; and each row has N − L = 3 zeros and L = 5 nonzero values.

Now, the banded matrix Tδ(x̂x̂∗) is not rank 1 nor is the vector x̂, the Fourier coefficients of the
signal we want to recover, an eigenvector of the matrix. So, we normalize the nonzero entries of the
banded matrix to obtain the relative phases of the recovered Fourier quantities, which are of the

form ei(θ̂n−θ̂m) for n,m ∈ ZN . Let X = x̂x̂∗ and define

(X̊)ij :=


Xij

|Xij |
, if Xij 6= 0

0, if Xij = 0

as the normalized matrix desired. Then, the matrix of relative phases in this example is

TδX̊ =



1 ei(θ̂0−θ̂1) ei(θ̂0−θ̂2) 0 0 0 ei(θ̂0−θ̂6) ei(θ̂0−θ̂7)

ei(θ̂1−θ̂0) 1 ei(θ̂1−θ̂2) ei(θ̂1−θ̂3) 0 0 0 ei(θ̂1−θ̂7)

ei(θ̂2−θ̂0) ei(θ̂2−θ̂1) 1 ei(θ̂2−θ̂3) ei(θ̂2−θ̂4) 0 0 0

0 ei(θ̂3−θ̂1) ei(θ̂3−θ̂2) 1 ei(θ̂3−θ̂4) ei(θ̂3−θ̂5) 0 0

0 0 ei(θ̂4−θ̂2) ei(θ̂4−θ̂3) 1 ei(θ̂4−θ̂5) ei(θ̂4−θ̂6) 0

0 0 0 ei(θ̂5−θ̂3) ei(θ̂5−θ̂4) 1 ei(θ̂5−θ̂6) ei(θ̂5−θ̂7)

ei(θ̂6−θ̂0) 0 0 0 ei(θ̂6−θ̂4) ei(θ̂6−θ̂5) 1 ei(θ̂6−θ̂7)

ei(θ̂7−θ̂0) ei(θ̂7−θ̂1) 0 0 0 ei(θ̂7−θ̂5) ei(θ̂7−θ̂6) 1



.

As per strategy, the matrix TδX̊ conveniently decomposes into 3 matrices: 2 diagonal matrices of
relative phases and a 0-1 circulant matrix,
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TδX̊ =


eiθ̂0 0 · · · 0

0 eiθ̂1 0
...

... · · ·
. . .

...

0 · · · · · · eiθ̂7





1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1




e−iθ̂0 0 · · · 0

0 e−iθ̂1 0
...

... · · ·
. . .

...

0 · · · · · · e−iθ̂7

 .

Many spectral properties of these 0-1 circulant matrices are well-known. This strategic construction
of the circularly banded matrix exploits the fact that the leading eigenvector of the circulant matrix
is [1 1 · · · 1]T . So, then note that the vector of phases of the Fourier coefficients of x, x̂/|x̂| =

[eiθ̂0 eiθ̂1 · · · eiθ̂7 ]T , is indeed an eigenvector of TδX̊ and its associated eigenvalue is L = 5:

TδX̊


eiθ̂0

eiθ̂1

...

eiθ̂7

 =


eiθ̂0 0 · · · 0

0 eiθ̂1 0
...

0 · · ·
. . .

...

0 · · · · · · eiθ̂7





1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1




e−iθ̂0 0 · · · 0

0 e−iθ̂1 0
...

... · · ·
. . .

...

0 · · · · · · e−iθ̂7




eiθ̂0

eiθ̂1

...

eiθ̂7



=


eiθ̂0 0 · · · 0

0 eiθ̂1 0
...

... · · ·
. . .

...

0 · · · · · · eiθ̂7





1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1





1

1

1

1
...

1



= 5


eiθ̂0 0 · · · 0

0 eiθ̂1 0
...

0 · · ·
. . .

...

0 · · · · · · eiθ̂7





1

1

1

1
...

1



= 5


eiθ̂0

eiθ̂1

...

eiθ̂7

 = L
x̂

|x̂|
.

Thus, it can be shown for the general case that L is the dominant eigenvalue and x̂/|x̂| is the unique,
leading eigenvector. In the presence of noise, however, the desired eigenvector is not unique which
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makes the task of finding the correct phase is nontrivial; the signal can only be recovered up to certain
global phase factors. The guiding article [8] presents robustness bounds for the estimated signal xrec

from noisy measurements, a distinguishing factor resulting from the underlying mathematics of
Theorem and Corollary 1. The 1-dimensional phase retrieval method, Algorithm 1, is presented in
Appendix B on page 37.

2.4 1D Numerical Testing

To test the performance of Algorithm 1, we implemented two numerical experiments in MATLAB:
(1) a test for accuracy and robustness to random noise added to the phaseless Fourier measurements
Yj,` as defined by equation (2.1); and (2) a test of execution time based on the length N of the
1-dimensional signal. For the first test, Gaussian noise ηj,` was added using signal-to-noise ratios
(SNR) 10, 20, 30, 40, 50, 60, 70, and 80. Per each SNR value, the code was looped 50 times where
each time a different true signal x ∈ CN was randomly generated by a Gaussian distribution. Then,
finally, the relative error values, computed in decibels by the formula

rel err = 10 log10

(
‖x− xrec‖22
‖x‖22

)
,

where x ∈ CN is the true (randomly generated) signal and xrec the signal recovered by Algorithm
1, were averaged.

Recall that the bandlimited parameter δ = |supp(m)| = |supp(m̂)|. Figure 4 demonstrates that as
we increase the support parameter δ closer to the length N of the signal, we obtain a recovered signal
xrec closer to the true signal up to the level of noise added to each measurmenet Yj,` as expected.

Figure 4: Relative Error vs. Added Noise Figure 5: Log-Log of Execution Time vs. Signal
Length

In the execution time testing, we similarly looped the code 50 times for each 6 differently sized
and randomly generated (Gaussian) signals: N = 24, 26, 28, 210, 212, 214. Time was measured in
seconds from when the phaseless measurements matrix, with added SNR = 30, was created to when
xrec was recovered. One difference in this numerical test is that a different bandlimited mask was
generated for each of the 50 loops as well as the true signal x. Figure 5 is a log-log plot comparison
of the execution times of the code measured against O(N log2N) time, the time associated with the
number of computations needed to compute the fast Fourier transform (FFT). The O(N log2N)
time graph was scaled to judge the rate of change of the 2 graphs. Note that Algorithm 1 performs
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faster than FFT time for signal sizes up to approximately N = 300 and performs comparably for
higher values of N .

As these metrics show much promise for use in the field, therefore the goal is to achieve similar
results for the 2-dimensional phase retrieval code of Algorithm 2.

3 2D Phase Retrieval

3.1 2D Preliminaries and Notation

As stated before, the objective of this research is to extend the results of [8] for the 1-dimensional
case to the 2-dimensional case. First, we introduce notation used throughout this section. Using
script notation, we represent discrete, 2-dimensional signals as matrices X ∈ CN1×N2 , and following
notation from [2], we use lowercase letters with bold vector indexing to denote the components of
a 2-dimensional signal. Thus, for n = [n1 n2]T ∈ ZN1

× ZN2
, the component xn denotes the n1

th

horizontal row element of the n2
th vertical column of signal X where n1 ∈ ZN1

and n2 ∈ ZN2
.

Operation Definition

(Rectangular) Periodicity Matrix N N =

N1 0

0 N2


Region of Summation RN RN := {n = [n1 n2]T : n1 ∈ ZN1

, n2 ∈ ZN2
}

Conjugate, Transpose, & Conjugate
Transpose

X ,X T ,X ∗

2D Time Reversal x̃n := x−n

Circular Shift in Time Operator
S` : CN1×N2 → CN1×N2

(S`X )n := xn−`

Modulation Operator
Wk : CN1×N2 → CN1×N2

(WkX )n := xne
−2πikTN−1n

Hadamard (Element-wise) product (X ◦ H)n := xnhn

Circular Convolution
~N : CN1×N2 × CN1×N2 → CN1×N2

(X ~N H)n :=
∑

k∈RN

xkhn−k

Table 2: 2D Elementary Operations

Elementary operations on signals, as shown in Table 2, are defined similarly to the 1-dimensional
case but with vector indexing. All indexing of 2-dimensional signals X ,H ∈ CN1×N2 are implied to
be modulo N1 horizontally (by row) and modulo N2 vertically (by column).

Note that the periodicity of an N1 ×N2 signal is represented by a 2× 2 matrix. We could consider
the 1-dimensional signals as having periodicity defined by a 1× 1 matrix, so that the 1-dimensional
case is a special case of a general periodicity definition. If N is a diagonal matrix, then the signal is
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rectangularly periodic, that is the periodicity can be seen in horizontal and vertical blocks parallel
to the axes of shifts.

Definition 3.1.1. A 2-dimensional signal X ∈ CN1×N2 is rectangularly N-periodic if there
exists N1, N2 ∈ N such that xn1+N1,n2

= xn1,n2
= xn1,n2+N2

for all n1 ∈ ZN1
and all n2 ∈ ZN2

. The
periodicity of the signal X is defined by the diagonal matrix

N =

N1 0

0 N2

 .
A more general representation of a 2-dimensional periodic signal has nonzero terms on the skew-
diagonal of its periodicity matrix N . In our analysis, as well as in diffraction imaging, assuming
rectangular periodicity is valid since most signals investigated are not periodic.

Lastly, we define the 2-dimensional analogs of the DFT and IDFT.

Definition 3.1.2. Let X ∈ CN1×N2 and n, j ∈ ZN1
× ZN2

. The Discrete Fourier Transform
FN : CN1×N2 → CN1×N2 and Inverse Discrete Fourier Transform F−1

N : CN1×N2 → CN1×N2 are
defined as

x̂j = (FNX )j :=
∑

n∈RN

xne
−2πinTN−1j

xn = (F−1
N X̂ )n :=

1

detN

∑
j∈RN

x̂je
2πijTN−1n.

Traditionally, the 2-dimensional DFT FN : CN1×N2 → CN1×N2 is given with 2 indexing sets for a
double summation:

(FNX )j1,j2 = x̂j1,j2 :=

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2
e
−2πin1j1

N1 e
−2πin2j2

N2 .

Nonetheless, vector indexing – though a slight abuse of notation since indices n, j ∈ ZN1
× ZN2

are
not ordered pairs – provides compactness of notation. Furthermore, we believe this notation can
ease the translation of our theoretical results to 3 or even higher dimensions.

3.2 2D Measurements Equation

Let X ∈ CN1×N2 be the 2-dimensional signal of the unknown sample and the bandlimited mask
M∈ CN1×N2 . The real-valued, phaseless Fourier measurements now populate a fourth-order tensor
Y ∈ RN1×N2×L1×L2 , where L1, L2 represent the total horizontal and vertical shifts of the mask, re-
spectively. Thus, the notation Yj1,j2,`1,`2 denotes the measurement corresponding to the `1

th and `2
th

horizontal and vertical shifts, and the k1
th and k2

th horizontal and vertical Fourier modes, respec-
tively. The physics of diffracted amplitudes in 2 dimensions prescribes the governing measurements
equation

Yj1,j2,`1,`2 =

∣∣∣∣∣
N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2mn1−`1,n2−`2e
−2πin1j1

N1 e
−2πin2j2

N2

∣∣∣∣∣
2

+ ηj1,j2,`1,`2 ,
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for n1, j1, `1 ∈ ZN1 and n2, j2, `2 ∈ ZN2 . But for compactness, we use vector indexing and bracket
notation: Let j,n, ` ∈ ZN1 ×ZN2 and let Y[j `] correspond to the measurement Yj1,j2,`1,`2 ∈ R, then
we can rewrite the measurements equation as

Y[j `] =

∣∣∣∣∣ ∑
n∈RN

xnmn−`e
−2πinTN−1j

∣∣∣∣∣
2

+ η[j `]

=
∣∣∣(FN (X ◦ S`M))j

∣∣∣2 + η[j `].

(3.1)

3.3 Preliminary Lemmas

In this section, we show that Lemmas 2.2.1, 2.2.2, and 2.2.4 from the 1-dimensional case extend
readily to the 2-dimensional case. Similarly, the mathematical properties of the DFT in 2 dimensions,
taken from [2] (proofs for Properties 2(iv.) and 2(viii.) are in Appendix A), bear resemblance to the
1-dimensional properties.

Properties 2. Let X ,H ∈ CN1×N2 be arbitrary, 2-dimensional signals and α, β ∈ C scalars. Then
for all n, j,k, ` ∈ ZN1 × ZN2 , the following properties hold:

i. (FN (αX + βH))j = αx̂j + βĥj

ii. (FN (S`X ))j = (W`X̂ )j

iii. (FN X̃ )j = ̂̃xj = ˜̂xj
iv. (S̃`X )n = (S−`X̃ )n

v. (FN (H~N X ))j = (Ĥ ◦ X̂ )j

vi. (FN (H ◦ X ))j =
1

detN
(Ĥ~N X̂ )j

vii. (FNX )j = x̂j = ˜̂xj
viii. (FN (FNX ))j = (FN X̂ )j = (detN) x̃j.

Lemma 3.3.1. Let X ∈ CN1×N2 and j, ` ∈ ZN1
× ZN2

, then

(
FN (X ◦ S`X )

)
j

=
1

detN
e−2πijTN−1`

(
FN (X̂ ◦ SjX̂ )

)
−`
.

Proof. (
FN (X ◦ S`X )

)
j

=
1

detN
(X̂ ~N FN (S`X ))j (by Property 2(vi.))

=
1

detN
(X̂ ~N W`X̂ )j (by Property 2(ii.))

=
1

detN

∑
n∈RN

x̂n(W`X̂ )j−n

=
1

detN

∑
n∈RN

x̂nx̂j−ne
−2πi`TN−1(j−n)
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=
1

detN
e−2πi`TN−1j

∑
n∈RN

x̂nx̂j−ne
2πi`TN−1n

=
1

detN
e−2πi`TN−1j

∑
n∈RN

x̂n
˜̂xn−je2πi`TN−1n. (by Property 2(vii.))

Note that the term ˜̂xn−j can be written as x̂n−j, since for any signal X ,

˜̂
X = F̃NX =

˜̃̂
X = X̂ ,

by Property 2(vii.) and because the reversal of the reversal of a signal is the original signal. Therefore,
we have

(FN (X ◦ S`X ))j =
1

detN
e−2πi`TN−1j

∑
n∈RN

x̂nx̂n−je
2πi`TN−1n

=
1

detN
e−2πi`TN−1j

∑
n∈RN

x̂n(SjX̂ )ne
−2πi(−`)TN−1n

=
1

detN
e−2πi`TN−1j

∑
n∈RN

(
X̂ ◦ SjX̂

)
n
e−2πi(−`)TN−1n

=
1

detN
e−2πi`TN−1j

(
FN (X̂ ◦ SjX̂ )

)
−`
. (by def. of DFT)

Before the next lemma, we give some notation regarding the manipulation of the 4-tensor Y. Using
colon and bracket notation, we define the matrix Y[: `] ∈ RN1×N2 as the 2-dimensional slice3 of
4-dimensional array Y ∈ RN1×N2×L1×L2 for a fixed vector index ` = [`1 `2]T ∈ ZL1 × ZL2 . And
thus, the notation (Y[: `])k refers to the (k1, k2) entry of Y[: `].

Lemma 3.3.2. Let X ∈ CN1×N2 be the unknown 2-dimensional signal to be recovered and the
mask M ∈ CN1×N2 known. Let Y[: `] ∈ RN1×N2 be the 2-dimensional slice of 4th-order tensor
Y ∈ RN1×N2×L1×L2 as defined by measurements equation (3.1) for a fixed ` ∈ ZL1

× ZL2
, i.e. the

N1 ×N2 matrix of Fourier modes for the `1
th horizontal shift and `2

th vertical shift. Then for any
k ∈ ZN1 × ZN2 ,

(
FN
(
FNY[: `]

))
k

= (detN)
[
FN (X ◦ SkX ) ◦ FN (M̃ ◦ S−kM̃)

]
`
.

Proof. From the 2D measurements equation (3.1), we have that

Y[: `] = |FN (X ◦ S`M)|2 = [FN (X ◦ S`M)] ◦ [FN (X ◦ S`M)].

Note that we can rewrite the conjugate term:

(FN (X ◦ S`M))j =
∑

n∈RN

xn(S`M)ne−2πinTN−1j

3A term commonly used in computer science and programming for the manipulation of multidimensional arrays
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=
∑

n∈RN

xnmn−`e
2πinTN−1j

= detN

(
1

detN

∑
n∈RN

xnmn−`e
2πinTN−1j

)
= (detN) [F−1

N (X ◦ S`M)]j. (by def. of IDFT)

So, for j ∈ ZN1 × ZN2 ,

Y[j `] =
[
(FN (X ◦ S`M)) ◦ (detN)

(
F−1
N (X ◦ S`M)

)]
j
.

Taking the 2D DFT of the measurements Y[: `],

FNY[: `] = FN [FN (X ◦ S`M) ◦ (detN)F−1
N (X ◦ S`M)]

=
1

detN

[
FN (FN (X ◦ S`M)) ~N (detN)(X ◦ S`M)

]
j

(by Property 2(vi.))

=
1

detN

[
(detN)(X ◦ S`M

:
) ~N (detN)(X ◦ S`M)

]
(by Property 2(viii.))

= (detN)
[
(X̃ ◦ S−`M̃) ~N (X ◦ S`M)

]
. (by Property 2(iv.))

By the definition of convolution, we have for k ∈ ZN1 × ZN2(
FNY[: `]

)
k

= (detN)
∑

n∈RN

x̃n(S−`M̃)nxk−n(S`M)k−n

= (detN)
∑

n∈RN

x−nm̃n+`xk−nmk−n−`

= (detN)
∑

n∈RN

x−nxk−nm̃n+`mk−n−`

= (detN)
∑

n∈RN

x−nxk−nm̃n+`m̃(n+`)−k (by def. of reversal)

= (detN)
∑

n∈RN

x−n(S−kX )−nm̃n+`(SkM̃)n+`.

Let p = −n. Note that the region of summation for p is equivalent to that of n ∈ RN due to
modular indexing. So, we have

(
FNY[: `]

)
k

= (detN)
∑

p∈RN

xp(S−kX )pm̃`−p(SkM̃)`−p

= (detN)
∑

p∈RN

(X ◦ S−kX )p(M̃ ◦ SkM̃)`−p

= (detN)
[(
X ◦ S−kX

)
~N

(
M̃ ◦ SkM̃

)]
`
. (by def. of convolution)

So, given that
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(
FNY[: `]

)
k

= (detN)
[(
X ◦ S−kX

)
~N

(
M̃ ◦ SkM̃

)]
`
, (3.2)

we take one more DFT and utilize Property 2(v.) to yield

(
FN
(
FNY[: `]

))
k

= (detN)
[
FN
(
X ◦ S−kX

)
◦ FN

(
M̃ ◦ SkM̃

)]
`
.

Definition 3.3.3. Let X ∈ CN1×N2 be a 2-dimensional signal and L1, L2 ∈ N be such that L1 and
L2 divide N1 and N2, respectively. Then, the uniform sub-sampling operator ZL : CN1×N2 →
CN1/L1×N2/L2 is defined as

(ZLX )n := xLn, ∀n ∈ ZN1/L1
× ZN2/L2

.

where the sub-sampling periodicity matrix

L =

L1 0

0 L2

 .
Lemma 3.3.4 (Aliasing in 2D). Let X ∈ CN1×N2 be arbitrary and suppose L1 and L2 divide N1

and N2, respectively. Then, for any j ∈ ZN1/L1
× ZN2/L2

,

(FNL−1(ZLX ))j =
1

detL

∑
p∈RL

x̂j−NL−1p,

where (rectangular) periodicity matrices L =

L1 0

0 L2

 and NL−1 =

N1/L1 0

0 N2/L2

, and region

of summation RL = {p : p1 ∈ ZL1
, p2 ∈ ZL2

}.

Proof. By the definition of the DFT of signals with periodicity NL−1, FNL−1 : CN1/L1×N2/L2 →
CN1/L1×N2/L2 , we have

(FNL−1(ZLX ))j =
∑

n∈RNL−1

xLne
−2πinTN−1Lj,

where the region of summation RNL−1 = {n : n1 ∈ ZN1/L1
, n2 ∈ ZN2/L2

}. To show that our
exponent agrees with the definition of this transform, we see that

−2πinTN−1Lj = −2πi
[
n1 n2

] 1

N1
0

0
1

N2


L1 0

0 L2

j1
j2


= −2πi

[
n1

N1

n2

N2

]L1j1

L2j2


= −2πi

(
n1L1j1
N1

+
n2L2j2
N2

)
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= −2πi

(
n1j1
N1/L1

+
n2j2
N2/L2

)
.

By definition of the IDFT,

(FNL−1(ZLX ))j =
∑

n∈RNL−1

(
1

detN

∑
k∈RN

x̂ke
2πikTN−1Ln

)
e−2πinTN−1Lj

=
1

detN

∑
k∈RN

x̂k
∑

n∈RNL−1

e2πikTN−1Lne−2πinTN−1Lj

=
1

detN

∑
k∈RN

x̂k
∑

n∈RNL−1

e2πinTN−1Lke−2πinTN−1Lj

=
1

detN

∑
k∈RN

x̂k
∑

n∈RNL−1

e2πinTN−1L(k−j)

=
1

detN

∑
k∈RN

x̂k (det(NL−1)) δk−j mod NL−1

=
det(NL−1)

detN

∑
k∈RN

x̂kδk−j mod NL−1

=
(detN)(detL−1)

detN

∑
k∈RN

x̂kδk−j mod NL−1

=
1

detL

∑
k∈RN

x̂kδk−j mod NL−1 ,

where mod NL−1 denotes modulo N1/L1 horizontally (first index component) and modulo N2/L2

vertically (second index component). Let p ∈ ZN1
× ZN2

. Here, the Kronecker delta is defined as

δk−j mod NL−1 =

{
1, k = j−NL−1p

0, otherwise
.

We can see more explicitly that this Kronecker delta is 1 when

k1

k2

 =

j1
j2

−
N1 0

0 N2


 1

L1
0

0
1

L2


p1

p2



=

j1
j2

−
p1

N1

L1

p2
N2

L2



=

j1 − p1
N1

L1

j2 − p2
N2

L2


for p1 ∈ ZN1 and p2 ∈ ZN2 . Then, similarly as in Lemma 2.2.4, there are L1 terms of p1 and L2

terms of p2 which satisfy δk−j mod NL−1 = 1. Therefore, we have
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(FNL−1(ZLX ))j =
1

detL

∑
p∈RL

x̂j−NL−1p.

3.4 Main Result for 2D

Before providing the main result, we again discuss some preliminary notation. Recall in the 1-
dimensional case for Lemma 2.2.2 and Theorem 1, we held the shift ` ∈ ZL fixed and took the
DFT of the measurements for varying Fourier modes of y` ∈ RN , which are the column vectors
of Y ∈ RN×L. Then, we transposed Y and fixed the Fourier modes k ∈ ZN to take the DFT for
variable shifts.

With higher dimensional arrays, transposing nth-order tensors requires considering the permutation
symmetry group Sn of its n! − 1 transpositions [7]. Upon investigating the 2-dimensional variant
of Theorem 1, we discovered there is only one transposition permutation Tσ that is needed: we
want to fix the shift ` ∈ ZL1

× ZL2
and take the 2D DFT of Y[: `] ∈ RN1×N2 for varying modes

j ∈ ZN1
× ZN2

, transpose the tensor4 FNY ∈ CN1×N2×L1×L2 and then take the L-period 2D DFT
of the matrices ((FNY)Tσ)[: k] ∈ CL1×L2 with fixed Fourier modes k ∈ ZL1 ×ZL2 and varying shifts
`. Thus, for any 4-tensor M ∈ CN1×N2×L1×L2 and indices i, j, k, l we define

(MTσ)ijkl := Mklij .

Thus, in bracket notation, the desired transpose permutation for the measurements tensor Y is

(YTσ)[` j] = Y[j `].

Theorem 2. Let the 2-dimensional signal X ∈ CN1×N2 be arbitrary and the bandlimited mask
M ∈ CN1×N2 known. And for L1, L2 ∈ N such that L1 divides N1 and L2 divides N2, let Y ∈
RN1×N2×L1×L2 contain N1 ·N2 ·L1 ·L2 measurements of the form (3.1). Then, for any ω ∈ ZL1

×ZL2

and any k ∈ ZN1 × ZN2 ,

(FL(FNY)Tσ)[ω k] =
detL

(detN)2

∑
p∈RNL−1

(
FN

(
X̂ ◦ Sω−LpX̂

))
k

(
FN

(
M̂ ◦ SLp−ωM̂

))
k
.

Moreover, if supp(M̂) = {n ∈ ZN1
×ZN2

: 0 ≤ n1 ≤ δ1−1, 0 ≤ n2 ≤ δ2−1} and L1 = 2δ1−1, L2 =
2δ2 − 1, then the sum above collapses to exactly one of the four terms:

(detN)2

detL
(FL(FNY)Tσ)[ω k] =



(i.)
(
FN (X̂ ◦ SωX̂ )

)
k

(
FN (M̂ ◦ S−ωM̂)

)
k

(ii.)
(
FN (X̂ ◦ Sω−[0 L2]T X̂ )

)
k

(
FN (M̂ ◦ S[0 L2]T−ωM̂)

)
k

(iii.)
(
FN (X̂ ◦ Sω−[L1 0]T X̂ )

)
k

(
FN (M̂ ◦ S[L1 0]T−ωM̂)

)
k

(iv.)
(
FN (X̂ ◦ Sω−[L1 L2]T X̂ )

)
k

(
FN (M̂ ◦ S[L1 L2]T−ωM̂)

)
k

(3.3)

(i.) if ω ∈ Zδ1 × Zδ2 , (ii.) if ω ∈ Zδ1 × ZL2
\Zδ2 , (iii.) if ω ∈ ZL1

\Zδ1 × Zδ2 , and (iv.) if
ω ∈ ZL1\Zδ1 × ZL2\Zδ2 .

4This is abuse of notation as in Theorem 1; here, we assume FN operates on 2-dimensional slices of Y for fixed `.
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Proof. In Lemma 3.3.2, we showed in equation (3.2) that we can write the (k1, k2, `1, `2) entry of
FNY as

(FNY)k1,k2,`1,`2 = (detN)
[(
X ◦ S−[k1 k2]TX

)
~N

(
M̃ ◦ S[k1 k2]T M̃

)]
[`1 `2]T

.

Using bracket notation and the previously defined transpose Tσ, we equivalently have

(
(FNY)Tσ

)
[` k]

= (detN)
[(
X ◦ S−kX

)
~N

(
M̃ ◦ SkM̃

)]
`
.

for ` ∈ ZL1
× ZL2

. Let U ∈ CN1×N2 , and define U = (detN)[(X ◦ S−kX ) ~N (M̃ ◦ SkM̃)]. If we
take `1 ∈ ZN1

and `2 ∈ ZN2
at equally spaced L1 horizontal and L2 vertical shifts, respectively, such

that L1 divides N1 and L2 divides N2, then u` corresponds to sub-sampled elements of U for shifts

` ∈
{

0,
N1

L1
,

2N1

L1
, . . . ,

(L1 − 1)N1

L1

}
×
{

0,
N2

L2
,

2N2

L2
, . . . ,

(L2 − 1)N2

L2

}
.

Now, we take the 2D L-period DFT of 2-dimensional slices of (FNY)Tσ ∈ CL1×L2×N1×N2 for fixed
modes of k ∈ ZN1

× ZN2
. Then for ω ∈ ZL1

× ZL2
, we have by definition 3.3.3,

(
FL(FNY)Tσ

)
[ω k]

= (FL(ZNL−1U))ω.

Thus, by Lemma 3.3.4, with NL−1 replacing L,

(
FL(FNY)Tσ

)
[ω k]

=
1

det(NL−1)

∑
p∈RNL−1̂

uω−N(NL−1)−1p

=
1

det(NL−1)

∑
p∈RNL−1̂

uω−NLN−1p

=
1

det(NL−1)

∑
p∈RNL−1̂

uω−Lp (diagonal matrices commute)

=
detL

detN

∑
p∈RNL−1̂

uω−Lp.

Applying Lemma 3.3.2,

(
FL(FNY)Tσ

)
[ω k]

=
detL

detN

∑
p∈RN

(detN) [FN (X ◦ S−kX )]ω−Lp[FN (M̃ ◦ SkM̃)]ω−Lp

= (detL)
∑

p∈RN

[FN (X ◦ S−kX )]ω−Lp[FN (M̃ ◦ SkM̃)]ω−Lp.

Now, we utilize that the time reversal of the time reversal of a signal is the original signal and negate
the indexing in the second term of the summation, i.e. −(ω − Lp) = Lp− ω.

(FL(FNY)Tσ)[ω k] = (detL)
∑

p∈RN

[FN (X ◦ S−kX )]ω−Lp[FN (M̃ ◦ SkM̃)]
:

Lp−ω.

28



Then, by Properties 2(iii.) and 2(iv.),

(FL(FNY)Tσ)[ω k] = (detL)
∑

p∈RN

[FN (X ◦ S−kX )]ω−Lp[FN (
˜̃M◦˜SkM̃)]Lp−ω

= (detL)
∑

p∈RN

[FN (X ◦ S−kX )]ω−Lp[FN (M◦ S−kM)]Lp−ω.

Therefore, by Lemma 3.3.1, we have

(
FL(FNY)Tσ

)
[ω k]

= (detL)
∑

p∈RN

1

detN
e−2πi(ω−Lp)TN−1(−k)

[
FN

(
X̂ ◦ Sω−LpX̂

)]
k
·

1

detN
e−2πi(Lp−ω)TN−1(−k)

[
FN

(
M̂ ◦ SLp−ωM̂

)]
k

=
detL

(detN)2

∑
p∈RN

(
FN

(
X̂ ◦ Sω−LpX̂

))
k

(
FN

(
M̂ ◦ SLp−ωM̂

))
k

as desired. To show the second part of Theorem 2, we want to find conditions where

supp
(
M̂
)
∩ supp

(
SLp−ωM̂

)
6= ∅.

Recall definition 2.2.5 and note in 2 dimensions we can similarly define the bandlimited parameter
δ1 × δ2 of M̂ as having

supp
(
M̂
)

= {n ∈ ZN1 × ZN2 : 0 ≤ n1 ≤ δ1 − 1, 0 ≤ n2 ≤ δ2 − 1}.

Thus, we must consider both the horizontal and vertical shifts of M̂ to verify quantities where the
intersection is nonempty. Since

Lp− ω =

L1 0

0 L2

p1

p2

−
ω1

ω2

 =

p1L1 − ω1

p2L2 − ω2

 ,
then the set supp(M̂) ∩ supp(SLp−ωM̂) is nonempty if and only if

|p1L1 − ω1| ≤ δ1 − 1 and |p2L2 − ω2| ≤ δ2 − 1.

So, by Corollary 1, p1 = 0 for ω1 ∈ Zδ1 and p1 = 1 for ω1 ∈ ZL1\Zδ1 ; and also p2 = 0 for ω2 ∈ Zδ2
and p2 = 1 for ω2 ∈ ZL2

\Zδ2 . Thus, the 2 bounds imply the following values for vector p:

p =


[0 0]T , if ω ∈ Zδ1 × Zδ2
[0 1]T , if ω ∈ Zδ1 × ZL2

\Zδ2
[1 0]T , if ω ∈ ZL1

\Zδ1 × Zδ2
[1 1]T , if ω ∈ ZL1\Zδ1 × ZL2\Zδ2 .

Therefore, we can collapse the summation in Theorem 2 to the four exact terms as desired.
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(a) True Signal (b) Diffraction pattern of
noiseless measurements

(c) Image recovered by Algorithm 2

Figure 6: Cameraman image as unknown signal x

4 Empirical Results for 2D

4.1 Phase Synchronization in 2D and Algorithm 2

Empirical results after implementing MATLAB code for 2-dimensional phase retrieval seem to con-
firm the results of Theorem 2. Indeed, without added noise, randomly generated signals could be
recovered exactly up to computer error. Figure 6 shows the ”Cameraman” image encoded in RGB
pixels, which are all positive integer values. The picture has size N1 = N2 = 256 and the code used
L1 = L2 = 19 number of shifts. Part (b.) shows the diffraction pattern from Fourier measurements
of the image and (c.) is the image recovered from (b.) by Algorithm 2.

By Theorem 2 and taking an IDFT, we are able to extract from the 4th-order tensor Y ∈ RN1×N2×L1×L2

the altered quantities of the unknown signal X ∈ CN1×N2 as

X̂ ◦ SωX̂ =
(detN)2

detL
F−1
N

 (FL(FNY)Tσ)[ω :]

FN

(
M̂ ◦ S−ωM̂

)
 , ∀ω ∈ Zδ1 × Zδ2

X̂ ◦ Sω−[0 L2]T X̂ =
(detN)2

detL
F−1
N

 (FL(FNY)Tσ)[ω :]

FN

(
M̂ ◦ S[0 L2]T−ωM̂

)
 , ∀ω ∈ Zδ1 × ZL2\Zδ2

X̂ ◦ Sω−[L1 0]T X̂ =
(detN)2

detL
F−1
N

 (FL(FNY)Tσ)[ω :]

FN

(
M̂ ◦ S[L1 0]T−ωM̂

)
 , ∀ω ∈ ZL1\Zδ1 × Zδ2

X̂ ◦ Sω−[L1 L2]T X̂ =
(detN)2

detL
F−1
N

 (FL(FNY)Tσ)[ω :]

FN

(
M̂ ◦ S[L1 L2]T−ωM̂

)
 , ∀ω ∈ ZL1

\Zδ1 × ZL2
\Zδ2

where division is component-wise and (FL(FNY)Tσ)[ω :]∈CN1×N2 denotes the matrix for fixed ω1 ∈
ZL1

, ω2 ∈ ZL2
. So, to implement the phase synchronization portion of the algorithm, we vectorize

these recovered quantities and construct the matrix with the circular banded structure as in the
1-dimensional case; mathematically, that is, we use a vector transformation, vec : CN1×N2 → CN1N2 ,

and lay the recovered quantities vec(X̂ ◦ Sω−LpX̂ ) along the diagonals of an N1N2 ×N1N2 matrix.
Because the shifts have 2 degrees of freedom for movement, the support conditions of the mask,
supp(M̂) = {n ∈ ZN1 × ZN2 : 0 ≤ n1 ≤ δ1 − 1, 0 ≤ n2 ≤ δ2 − 1} generate a slightly different
sparsity structure for the banded matrix. Thus, we define Tδ1×δ2 : CN1N2×N1N2 → CN1N2×N1N2 as
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the banded matrix operator in 2D with respect to bandlimited parameters δ1 ∈ ZL1 and δ2 ∈ ZL2 .

(a) 35 shifts of size N1N2 = 1750 signal (b) 15 shifts of size N1N2 = 60 signal

Figure 7: Sparsity structure for banded matrices Tδ1×δ2

Generated in MATLAB, Figure 7 demonstrates the sparsity structure of Tδ1×δ2(vec(X̂ )vec(X̂ )∗).
The blue diagonals are nonzero entries whereas white space signifies zero entries of the matrix.
With smaller signal size N1 ×N2 = 6× 10, Figure 7(b.) shows more clearly the structure where the
individual nonzero entries are blue dots. As can be seen, there are additional bands of zeros between
the quantities placed near the main diagonal unlike in the 1-dimensional case with Tδ(x̂x̂∗). The

matrix Tδ1×δ2(vec(X̂ )vec(X̂ )∗) still has a similar ”circulant deconstruction.” For example, a 10× 10
0-1 matrix such as 

1 1 0 1 0 1 1 0 0 1

1 1 1 0 1 0 1 1 0 0

0 1 1 1 0 1 0 1 1 0

0 0 1 1 1 0 1 0 1 1

1 0 0 1 1 1 0 1 0 1

1 1 0 0 1 1 1 0 1 0

0 1 1 0 0 1 1 1 0 1

1 0 1 1 0 0 1 1 1 0

0 1 0 1 1 0 0 1 1 1

1 0 1 0 1 1 0 0 1 1


is also a circulant matrix with leading eigenvector [1 1 1 · · · 1]T ∈ RN1N2 , and thus, has the
desired spectral properties for Algorithm 2 to recover the phase of X . The 2-dimensional phase
retrieval method, Algorithm 2, is presented in Appendices C and D on pages 38 and 39, respectively.

4.2 2D Numerical Testing

The same numerical tests were implemented to judge the accuracy and efficiency of phase recovery
for 2 dimensions. To test robustness, the 2D code was looped 30 times to compute averaged relative
error (in decibels) with the formula
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rel err = 10 log10

(
‖X − Xrec‖2F
‖X‖2F

)
,

where X ∈ CN1×N2 is the true signal, Xrec the recovered signal, and ‖ · ‖F the Frobenius norm.
Figure 8 demonstrates the same pattern as in Figure 4 for 1 dimension, a reduction in error when
the support parameters δ1, δ2 of the maskM increase. Because of the similar mathematical behavior,
consequently we conjecture the possibility of estimating bounds on the robustness to noise as done
in [8] in 1 dimension.

Figure 8: 2D Relative Error vs. Added Noise Figure 9: Log-Log of Execution Time vs. 2D Sig-
nal Size

Figure 9 compares execution time to recover the signal X from noisy (SNR = 30) measurements
Yj1,j2,`1,`2 with FFT, or O(N1N2 log2(N1N2)), time. The code was looped 30 times for different size
N1×N2 signals X , and the execution times were averaged. The 2D code seems to perform slower than
FFT time though not significantly so. In fact, the code recovered an N1N2 = 109 · 119 = 24871 size
signal from 8,033,333 noisy measurements, i.e. entries within Y ∈ RN1×N2×L1×L2 , at an average of
about 6.9 seconds. Notably, solving for the eigenvectors of the banded matrix Tδ1×δ2(vec(X̂ )vec(X̂ )∗)
constitutes the heaviest computational cost according to MATLAB’s run time Profiler, which logs
the execution time of functions within the code. The Profiler indicates that at least 90% of the
execution time is dedicated to this portion of the algorithm.

5 Concluding Remarks

The end goal of this REU project was to contribute real-world results that will improve upon existing
practices of the phase retrieval problem. We developed working software code in MATLAB that
can recover phase information for 2-dimensional signals efficiently. And in particular, the algorithm
presented in this paper is firmly grounded in the properties of Fourier and spectral analysis and
avoids costly iterative methods such as those used by alternating projections and PhaseLift.

Nevertheless, there are some questions that still need attention and further research. Top priority
should be given to analyzing rigorously the robustness of Algorithm 2 in the presence of measurement
error. The theoretical foundation laid by Theorem 2 greatly facilitates the task of developing similar
bounds and inequalities, as in [8] for the 1-dimensional case, between true and recovered signals.

Secondly, more investigation of the circular banded structure for the matrix Tδ1×δ2(vec(X̂ )vec(X̂ )∗)
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is needed to specify precisely how angular synchronization functions in 2 dimensions so that we may
understand better the desired spectral properties the algorithm hinges upon. This could perhaps
be crucial in making the 2D MATLAB code more efficient given that solving for the eigenvectors of
the banded matrix had the highest numerical cost. Lastly, we would like to extend framework for
Algorithm 2 to more generalized masked setups and hence to broader phase retrieval applications.
Although we gave particular attention to the ptychographic setting, the mathematical methods
presented here potentially have a wide-range of usage for other disciplines, including audio speech
processing, optical imaging, astronomy, quantum mechanics, and more.

6 Acknowledgements

This research was conducted at the NSF REU Site (DMS-1659203) in Mathematical Analysis and
Applications at the University of Michigan-Dearborn with support from the University of Michigan-
Ann Arbor. I would like to deeply thank mentor Aditya Viswanathan for his unwavering commitment
to our work and education, and co-mentors Yulia Hristova and Alejandro Uribe-Ahumada for their
additional guidance. Also, I would like to thank the National Science Foundation, National Security
Agency, University of Michigan-Dearborn (SURE 2019), and the University of Michigan-Ann Arbor
for supporting the unique opportunity to participate in real mathematical research.

References

[1] E. Candés, Y. Eldar, T. Strhomer, and V. Voroninski. Phase retrieval via matrix completion.
SIAM Journal on Imaging Sciences, 6(1):199–225, 2013.

[2] D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal Processing. Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1984.

[3] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform. Optics
Letters, 3(1):27–29, 1978.

[4] R. W. Gerchberg and W. O. Saxton. A practical algorithm for the determination of phase from
image and diffraction plane pictures. Optik, 35:237–246, 1972.

[5] K. Giewekemeyer, M. Beckers, T. Gorniak, M. Grunze, T. Salditt, and A. Rosenhahn. Ptycho-
graphic coherent X-ray diffractive imaging in the water window. Optics Express, 19(2):1037–
1050, 2011.

[6] J. W. Goodman. Introduction to Fourier Optics, 4th ed. W.H. Freeman and Company, New
York, NY, 2017.

[7] R. Pan. Tensor transpose and its properties. arXiv e-print, page arXiv:1411.1503, Nov 2014.

[8] M. Perlmutter, S. Merhi, A. Viswanathan, and M. Iwen. Inverting spectrogram measurements
via aliased Wigner distribution deconvolution and angular synchronization. arXiv e-print, page
arXiv:1907.10773, Jul 2019.

[9] J. M. Rodenburg. Ptychography and related diffractive imaging methods. Advances in Imaging
and Electron Physics, 150:87–184, 2008.

[10] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase retrieval
with application to optical imaging. IEEE Signal Processing Magazine, 32(3):87–109, May 2015.

33



[11] A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied
and Computational Harmonic Analysis, 30(1):20–36, Jan 2011.

[12] M. Vertelli, J. Kovacevic, and V. K. Goyal. Foundations of Signal Processing, 3rd ed. Cambridge
University Press, Cambridge, U.K., 2014.

[13] Z. Wen, C. Yang, X. Liu, and S. Marchesini. Alternating directional methods for classical and
ptychographic phase retrieval. Inverse Problems, 28(11):115010, Oct 2012.

34



Appendices

A Proofs of Selected 1D and 2D Properties

Property 1(iv.). Time Reversal of the Shift:

(S̃`x)n = (S−`x̃)n.

Proof. Starting with the definition of time reversal before applying the shift, we have

(S̃`x)n = (S`x)−n = x−n−` = x−(n+`) = x̃n+` = (S−`x̃)n.

Property 1(viii.). The DFT of the DFT:

(FN (FNx))j = Nx̃j .

Proof.

(FN (FNx))j =

(
FN

(
N−1∑
n=0

xne
−2πink
N

))
j

=

N−1∑
k=0

N−1∑
n=0

xne
−2πink
N e

−2πikj
N

=

N−1∑
n=0

xn

N−1∑
k=0

e
−2πik(n+j)

N

=

N−1∑
n=0

xn

N−1∑
k=0

(
e
−2πi(n+j)

N

)k
.

For the second summation term, we can use the formula for the sum of a finite geometric series.
When n+ j 6= 0,

N−1∑
k=0

(
e
−2πi(n+j)

N

)k
=

1− e−2πi(n+j)N/N

1− e−2πi(n+j)/N
=

1− e−2πi(n+j)

1− e−2πi(n+j)/N
= 0.

The last equality follows from noting that e−2πin = 1 for any integer n ∈ Z and the denominator
e−2πi(n+j)/N 6= 0 for all n, j ∈ ZN . When n+ j = 0, or equivalently n = −j,

N−1∑
k=0

(
e
−2πi(n+j)

N

)k
=

N−1∑
k=0

1 = N.

Thus, using Kronecker delta notation, we can now write
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(FN (FNx))j =

N−1∑
n=0

xn Nδn+j .

The Kronecker delta δn+j here is defined as

δn+j =

{
1, n = −j
0, otherwise

.

Therefore, we have

(FN (FNx))j = Nx−j = Nx̃j .

Property 2(iv.). 2D Time Reversal of the Shift:

(S̃`X )n = (S−`X̃ )n.

Proof. Starting with the definition of time reversal before applying the 2-dimensional shift, we have

(S̃`X )n = (S`X )−n = x−n−` = x−(n+`) = x̃n+` = (S−`X̃ )n.

Property 2(viii.). The DFT of the DFT in 2D:

(FN (FNX ))j = (detN) x̃j.

Proof.

(FN (FNX ))j =

(
FN

( ∑
n∈RN

xne
−2πinTN−1k

))
j

=
∑

k∈RN

( ∑
n∈RN

xne
−2πinTN−1k

)
e−2πikTN−1j

=
∑

n∈RN

xn
∑

k∈RN

e−2πinTN−1ke−2πikTN−1j

=
∑

n∈RN

xn
∑

k∈RN

e−2πikTN−1ne−2πikTN−1j

=
∑

n∈RN

xn
∑

k∈RN

e−2πikTN−1(n+j)

=
∑

n∈RN

xn (detN)δn+j.

The last equality follows from the second summation over RN , equivalent to a double sum of 2
complex exponentials, yielding the product δn1+j1δn2+j2 = δn+j. The Kronecker delta δn+j is defined
here as
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δn+j =

{
1, if n = −j

0, otherwise.

Therefore, we have

(FN (FNX ))j = (detN) x−j

= (detN) x̃j.

B Algorithm 1 Pseudocode

Algorithm 1: Signal Recovery from Phaseless Measurements for Bandlimited Masks

Inputs

1. Noisy measurements matrix Y ∈ RN×L with entries

Yj,` =

∣∣∣∣∣
N−1∑
n=0

xnmn−`e
− 2πinj

N

∣∣∣∣∣
2

+ ηj,`, for j ∈ ZN , ` ∈
{

0, NL ,
2N
L , . . . , (L−1)N

L

}
.

2. Bandlimited Mask m ∈ CN with supp(m̂) = {0, 1, . . . , δ − 1}, where L = 2δ − 1.

Steps

1. Estimate
(
FN

(
x̂ ◦ Sωx̂

))
k

for k ∈ ZN from Corollary 1 result (2.4).

2. Invert the Fourier transforms above to recover estimates of the L = 2δ−1 vectors x̂◦Sω−pLx̂.

3. Form the banded matrix TδX from estimates in Step 2 where

(TδX)i,j :=

{(
x̂ ◦ Sjx̂

)
i
, if |i− j| mod N < δ

0, otherwise
.

4. Hermitianize the matrix above: TδX←− [ 1
2 (TδX + (TδX)∗).

5. Estimate |x̂| from the diagonal of TδX.

6. Normalize TδX component-wise to form relative phase matrix TδX̊.

7. Compute the leading normalized eigenvector of TδX̊, u.

Output
An estimate of x, xrec := F−1

N x̂rec, where x̂rec is given component-wise by

(x̂rec)j :=
√

(TδX)j,j uj .
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C Algorithm 2 Pseudocode

Algorithm 2:
2D Signal Recovery from Phaseless Measurements for Bandlimited Masks

Inputs

1. N1 ·N2 · L1 · L2 noisy measurements 4-tensor Y ∈ RN1×N2×L1×L2 with entries

Yj1,j2,`1,`2 =

∣∣∣∣∣ ∑
n∈RN

xnmn−`e
−2πinTN−1j

∣∣∣∣∣
2

+ ηj1,j2,`1,`2 ,

for j1 ∈ ZN1
, j2 ∈ ZN2

and `1 ∈
{

0, N1

L1
, 2N1

L1
, . . . , (L1−1)N1

L1

}
, `2 ∈

{
0, N2

L2
, 2N2

L2
, . . . , (L2−1)N2

L2

}
.

2. Bandlimited Mask M ∈ CN1×N2 with supp(M̂) = {n ∈ ZN1
× ZN2

: 0 ≤ n1 ≤ δ1 − 1, 0 ≤
n2 ≤ δ2 − 1} and horizontal and vertical shifts L1 = 2δ1 − 1 and L2 = 2δ2 − 1, respectively.

Steps

1. Estimate
(
FN

(
X̂ ◦ SωX̂

))
k

for k ∈ ZN1
× ZN2

from Theorem 2 result (3.3).

2. Invert the Fourier transforms above to recover estimates of the L1 ·L2 matrices X̂ ◦Sω−LpX̂ .

3. Vectorize the recovered matrices to N1 ·N2 length vectors vec(X̂ ◦ Sω−LpX̂ ).

4. Form the banded matrix Tδ1×δ2X from the vectorized estimates in Step 3

5. Hermitianize the matrix above: Tδ1×δ2X←− [ 1
2 (Tδ1×δ2X + (Tδ1×δ2X)∗).

6. Estimate
∣∣∣vec(X̂ )

∣∣∣ from the diagonal of Tδ1×δ2X.

7. Normalize Tδ1×δ2X component-wise to form relative phase matrix Tδ1×δ2X̊.

8. Compute the leading normalized eigenvector of Tδ1×δ2X̊, u.

Output
An estimate of X (converted to matrix form from a vector), Xrec := F−1

N X̂rec, where X̂rec derives
from the vectorized quantities (

vec
(
X̂rec

))
j

:=
√

(Tδ1×δ2X)j,j uj .
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D Algorithm 2 MATLAB Code

1 %% 2D (Ptychographic) Phase Retrieval for Bandlimited Masks
2 %
3 % MATLAB Script to implement phase retrieval for bandlimited masks using
4 % discrete Fourier analysis and angular synchronization. An adaptation of the
5 % 1D phase retrieval code presented in
6 %
7 % 'Inverting spectrogram measurements via aliased Wigner distribution
8 % deconvolution and angular synchronization' by Michael Perlmutter, Sami
9 % Merhi, Aditya Viswanathan, and Mark Iwen. arXiv pre−print (Jul 2019),

10 % https://arxiv.org/abs/1907.10773.
11 %
12 % (Used with permission, copyright (c) 2018−Michigan State University,
13 % University of Michigan−Dearborn and the CHARMS Research Group)
14 %
15 % Cyril Cordor, Brendan Williams, Aditya Viswanathan, and Yulia Hristova, 2019
16 %
17
18 clear; close all; clc
19
20 % For repeatability, set random seed to ...
21 rng(1234);
22
23
24 %% Signal Parameters
25
26 % Signal dimension
27 N1 = 2ˆ8; % Choose signal horizontal size
28 N2 = 2ˆ7; % Choose signal vertical size
29
30 % Mask parameters: choose random or exponential deterministic
31 maskType = 'random'; % random mask
32 %maskType = 'exp'; % (Non−symmetric) exponential mask
33
34 % Support of mˆhat, bandlimited parameter
35 delta1 = ceil(1.25*log2(N1));
36 delta2 = ceil(1.25*log2(N2));
37
38 % Sub−sampling in space − no. of shifts
39 L1 = 2*delta1 − 1; % No. of horizontal shifts
40 L2 = 2*delta2 − 1; % No. of vertical shifts
41
42 % Noise parameters
43 addnoise = false; % Add noise?
44 snr = 30; % SNR of noise to be added
45
46
47 % Fix N1, N2 to satisfy divisibility requirements
48 N1 = L1 * ceil(N1/L1);
49 N2 = L2 * ceil(N2/L2);
50
51
52 % Print out problem parameters
53 fprintf( '\n\n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \n' );
54 fprintf( ' 2D Phase Retrieval from Masked Fourier Measurements \n' );
55 fprintf( ' −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \n' );
56
57 fprintf( ' Problem size, N1 = %d , N2 = %d , \n', N1, N2 );
58 fprintf( ' Bandwidth of mask (horiz./vert. card. of support of mˆhat),');
59 fprintf( ' delta1 = %d, delta2 = %d \n', delta1, delta2 );
60
61 fprintf( ' No. of shifts (in space), L1 = %d , L2 = %d \n', L1, L2 );
62 fprintf( ' Total no. of measurements, N1xN2xL1xL2 = %d\n\n', N1*N2*L1*L2 );
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63
64 switch lower(maskType)
65 case 'random'
66 fprintf( ' Using random masks \n\n' );
67 case 'exp'
68 fprintf( ' Using (non−symmetric) exponential masks from BlockPR method \n\n' );
69 end
70
71 if( addnoise )
72 fprintf( ' Noisy simulation? − Yes \n' );
73 fprintf( ' Added noise (SNR, dB) = %3.2f \n\n', snr );
74 else
75 fprintf( ' Noisy simulation? − No \n\n' );
76 end
77
78
79 %% Choice of mask m
80
81 % define mˆhat
82 m hat = zeros(N1,N2);
83
84 % Generate mask depending on type
85 switch lower(maskType)
86 case 'random'
87 % Random Gaussian mask
88 m hat(1:delta1, 1:delta2) = randn(delta1,delta2) .* ...
89 exp(1i*2*pi*rand(delta1,delta2));
90
91 case 'exp'
92 % Exponential mask (deterministic, real parameter)
93 a = max(4, (delta1−1)/2);
94 m1 hat(1:delta1,1) = exp(−(0:delta1−1).'/a) / ((2*delta1−1)ˆ.25);
95 b = max(4, (delta2−1)/2);
96 m2 hat(1:delta2,1) = exp(−(0:delta2−1).'/a) / ((2*delta2−1)ˆ.25);
97
98 m hat(1:delta1,1:delta2) = m1 hat*m2 hat';
99 end

100
101 % here is the mask in physical space (for reference)
102 m = ifft2(m hat);
103
104
105 % Pre−computation (of terms involving masks)
106 mask precomp l = zeros( N1,N2,delta1*delta2 );
107 mask precomp 2 = zeros( N1,N2,delta1*(L2 − delta2) );
108 mask precomp 3 = zeros( N1,N2,(L1 − delta1)*delta2 );
109 mask precomp 4 = zeros( N1,N2,(L1 − delta1)*(L2 − delta2) );
110
111 for w1 = 0:delta1−1
112 for w2 = 0:delta2 − 1
113 mask precomp l(:,:,delta1 * w2 + w1+1) = fft2( ...
114 m hat.*circshift(conj(m hat),−[w1 w2]), N1, N2);
115 end
116 end
117
118 for w1 = 0: delta1 −1
119 for w2 = delta2: L2 − 1
120 mask precomp 2(:,:,delta1*(w2−delta2) + w1 + 1) = fft2( ...
121 m hat.*circshift(conj(m hat),−[w1 w2−L2]), N1, N2);
122 end
123 end
124
125 for w1 = delta1:L1 − 1
126 for w2 = 0:delta2 − 1
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127 mask precomp 3(:,:,(delta1−1)*w2 + (w1−delta1) + 1) = fft2( ...
128 m hat.*circshift(conj(m hat),−[w1−L1 w2]), N1, N2);
129 end
130 end
131
132 for w1 = delta1: L1 − 1
133 for w2 = delta2: L2 − 1
134 mask precomp 4(:,:,(delta1−1)*(w2−delta2) + (w1−delta1) + 1) = fft2( ...
135 m hat.*circshift(conj(m hat),−[w1−L1 w2−L2]), N1, N2);
136 end
137 end
138
139 %% Choice of signal x
140 x = randn(N1,N2) + 1i*randn(N1,N2); % random complex signal x
141
142
143 %% Measurements
144 Y = zeros(N1,N2,L1,L2); % 4−tensor of (spectrogram) measurements
145
146 for p1=0:N1/L1:N1−1
147 for p2=0:N2/L2:N2−1
148 Y(:,:,p1*(L1/N1) + 1,p2*(L2/N2) + 1) = abs( ...
149 fft2( x.*circshift(m,[p1 p2]),N1,N2) ).ˆ2;
150 end
151 end
152
153 % Adding noise
154 if( addnoise )
155 signal power = norm( Y(:) )ˆ2 / ( N1*N2*L1*L2 );
156 noise power = signal power / ( 10ˆ(snr/10) );
157
158 % Add (real) Gaussian noise of desired variance
159 noise = sqrt( noise power )*randn( size(Y) );
160 Y = Y + noise;
161 else
162 noise power = 0;
163 end
164
165
166 %% Solve for diagonal of xˆxˆ*
167 tic; % Start execution time measurement
168
169 % First, compute the left−hand side of double−aliasing formulation
170 LHS = permute( fft2( permute( fft2(Y), [3, 4, 1, 2] ) ), [3, 4, 1, 2] );
171
172 % Initialize indexing arrays and counters
173 Indexmatcol = zeros(N1*N2,L1*L2);
174 Indexmatrow = zeros(N1*N2,L1*L2);
175 Tvals = zeros(N1*N2,L1*L2);
176 counter = 1;
177 indvals = reshape(1:N1*N2, N1, N2);
178
179 % Next, solve for diagonals
180 for w1 = 0:delta1−1
181 for w2 = 0:delta2 − 1
182 tmp = (N1*N2)ˆ2 / (L1*L2)*ifft2( LHS(:,:,w1 + 1,w2 + 1) ./ ...
183 mask precomp l(:,:,delta1*w2 + w1 + 1) );
184 Indexmatrow(:, counter) = indvals(:);
185 shftd idx = circshift(indvals, [w1 w2]);
186 Indexmatcol(:, counter) = shftd idx(:);
187 Tvals(:, counter) = tmp(:);
188 counter = counter + 1;
189 end
190 end
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191
192 for w1 = 0:delta1 − 1
193 for w2 = delta2:L2 − 1
194 tmp = (N1*N2)ˆ2/(L1*L2)*ifft2( LHS(:,:,w1+1,w2+1) ./ ...
195 mask precomp 2(:,:,delta1*(w2−delta2) + w1 + 1) );
196 Indexmatrow(:, counter) = indvals(:);
197 shftd idx = circshift(indvals, [w1 w2−L2]);
198 Indexmatcol(:, counter) = shftd idx(:);
199 Tvals(:, counter) = tmp(:);
200 counter = counter + 1;
201 end
202 end
203
204 for w1 = delta1:L1 − 1
205 for w2 = 0:delta2 − 1
206 tmp = (N1*N2)ˆ2/(L1*L2)*ifft2( LHS(:,:,w1+1,w2+1) ./ ...
207 mask precomp 3(:,:,(delta1−1)*w2 + (w1−delta1) + 1) );
208 Indexmatrow(:, counter) = indvals(:);
209 shftd idx = circshift(indvals, [w1−L1 w2]);
210 Indexmatcol(:, counter) = shftd idx(:);
211 Tvals(:, counter) = tmp(:);
212 counter = counter + 1;
213 end
214 end
215
216 for w1 = delta1:L1 − 1
217 for w2 = delta2:L2 − 1
218 tmp = (N1*N2)ˆ2 / (L1*L2)*ifft2( LHS(:,:,w1+1,w2+1) ./ ...
219 mask precomp 4(:,:,(delta1−1)*(w2−delta2) + (w1−delta1) + 1) );
220 Indexmatrow(:, counter) = indvals(:);
221 shftd idx = circshift(indvals, [w1−L1 w2−L2]);
222 Indexmatcol(:, counter) = shftd idx(:);
223 Tvals(:, counter) = tmp(:);
224 counter = counter + 1;
225 end
226 end
227
228
229 %% Angular synchronization
230
231 % Form T (delta1 by delta2) matrix
232 T del = sparse(Indexmatrow(:), Indexmatcol(:), Tvals(:), N1*N2, N1*N2);
233
234 % Hermitian symmetrize
235 T del = T del/2 + T del'/2;
236
237 % View sparsity structure of matrix
238 spy(T del)
239
240 % Magnitudes
241 mags = sqrt(abs(diag(T del)));
242
243 % Compute eig. values
244 nz idx = find(T del); % non zero locations
245
246 % Entry−wise normalization to get relative phases
247 T del(nz idx) = sign(T del(nz idx));
248
249 % Find leading e−vector
250 [xv, ˜, ˜] = eigs(T del, 1, 'LM');
251 xv = sign(xv);
252
253 % Reconstruction
254 xrec = ifft2(reshape(full(mags.*xv), [N1 N2]));
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255 xrec = xrec(:);
256 vecx = x(:); % true signal
257
258 % Correct for global phase factor
259 phaseOffset = angle( (xrec'*vecx) / (vecx'*vecx) );
260 xrec = xrec * exp(1i*phaseOffset);
261
262 % Record execution time for signal recovery
263 etime = toc;
264
265 fprintf( ' Execution time is %3.3e secs.\n', etime );
266
267 % Reshape to a matrix
268 recon = reshape(xrec, [N1, N2]);
269
270 % Reconstruction error in decibels (dB)
271 errordB = 10*log10( norm(x − recon, 'fro')ˆ2 / norm(x, 'fro')ˆ2 );
272
273 fprintf( '\n 2−Norm Error in reconstruction is %3.3e or %3.2f dB', ...
274 norm(recon − x, 'fro') / norm(x, 'fro'), errordB );
275
276 fprintf( '\n Inf. Norm Error in reconstruction is %3.3e\n\n', ...
277 norm(x(:) − xrec,inf) / norm(x(:),inf) );

43


