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Abstract

Abstract: Phototransduction is a complex biological process in which pho-
tons are detected in the retina giving rise to a meaningful representation of
incident light. In low-light conditions, this occurs primarily in the rods with
the light signal encoded in their membrane potentials. The ionic current
model of Kamiyama et al. (1996 and 2009) describes changes in the rod
membrane potential due to a photocurrent and other ionic currents. In the
retina, rods function together in a large coupled population. In this work,
we simulate a population of rods coupled with gap junctions and study the
consequences of the network properties of the coupling. In particular, we
consider rods uniformly distributed on a Cartesian grid or hexagonally tilted
with varying connection strengths. We examine the biochemistry described
by the Kamiyama rod model, present results on our population model, and
provide speculation into the functional purpose of gap junctions.

1. Introduction

Incident light spurs a vertebrate photoreceptor to activate a phototrans-
duction cascade. Phototransduction is a complex biological progress that
signals the beginning of vision. Photons are detected by the retina and then
transformed into a meaningful representation of light. In low-light condi-
tions, this transformation occurs primarily in rods; light signals are encoded
in the membrane potential of each rod ([1], [2]). The phototransduction pro-
cess and flow of photocurrent has been extensively researched and modeled
in vertebrate rod photoreceptors ([3], [4], [5]).

Now, the membrane potential of a rod is not determined exclusively by
the photocurrent. Ionic currents in the inner segment and current flowing
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through gap junctions with other nearby rods contribute to the magnitude of
voltage response by each rod ([6]). Researchers have also modeled the inner
segment ionic currents ([7], [8], [9], [10]).

However, gap junctions and their role in eyesight have received less at-
tention. In vertebrae retina, gap junctions electrically couple photoreceptors
([11], [12], reviewed in [13]). This coupling allows passage of current to
adjacent rods; thus gap junctions play an important role in vision. Prior
research suggests that gap junctions improve the signal-to-noise ratio of the
photoreceptor output ([14], [3], [15]).

In 2014, Guo et al.([16]) reviewed the major computational models of the
retina. While the single rod photoreceptor has been modeled extensively ([9],
[4], [17], [18], [19]), current literature lacks a computational model that en-
ables rod interaction across a large population. Using a conductance based
rod cell model provided by Kamiyama et al. ([8], [10]), we create a rod
population model which yields several compelling results on rod interaction
within a network and the physiological function of gap junctions. Specifi-
cally, we provide three significant contributions to the literature. First, we
transform the single rod cell model proposed by Kamiyama ([8]) into a pop-
ulation model of roughly 500 cells. Second, we constructed the population
hexagonally, and show that this anatomically correct structure is preferable
to the standard Cartesian layout. Finally, and most importantly, we draw
conclusions about the effect of gap junction coupling on eyesight.

2. The Single Cell Model

Kamiyama et al. ([8]) used a parallel conductance model to describe the
electrical properties, ionic currents and light sensitive current. A detailed
description of the ionic current model of the vertebrate rod photoreceptor
is listed in Appendix A. Figure 1 shows a circuit model of a photoreceptor.
This figure was originally presented by Kamiyama et al.[8].

Figure 2, also originally displayed in Kamiyama et al. [8], shows the
dynamics of the intracellular calcium system of the photoreceptor model.
The differential equation system located in Appendix A describes how free
calcium is diffused and buffered within the submembrane and intracellular
central space. The calcium mechanisms of the model are very detailed – the
detail is a central reason we selected the single cell model as foundation for
our population model.
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Figure 1: An electrical circuit representation of the Kamiyama Single Cell Ionic Current
model. Note that this is a Hodgkin&Huxley style model; each current is evaluated, added
together and then divided by membrane capacitance to calculate membrane potential with
respect to time.

The photocurrent model presented in Kamiyama et al. [10] can also be
found in Torre et al. [4], whom offer the model of phototransduction in
retinal rods. The model is included in Appendix A as well. While other
phototransduction models are available in the literature we preferred Torre
et al.’s model for two reasons. First, Torre et al. provided one of the first
quantitative phototransduction models. Consequently, many contemporary
models are derived from their basic model structure. Second, for our pur-
poses, we desire a model that can accurately reproduce a photocurrent. We
therefore proceed with this pioneer model but added several features that
advance the model; namely, we created a population structure that holds
many single cell models within it.

The system of differential equations was solved using ode15s, the Matlab
(Ver. 14, Mathworks) numerical integrator. Its a stiff systems integrator and
was preferable to ode23 or ode45.

2.1. Evaluation of Single Cell Model

Figure 3 shows our replication of previous results was successful ([10]).
We have accurately reproduced the first figure in Kamiyama et al. [10]. This
figure shows photocurrent, photovoltage, and other ionic current responses
to a series of light flashes. By reproducing these results, we demonstrated
proper replication of the model dynamics and parameters.
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Figure 2: A visual representation of the intracellular calcium system in the single cell
model. The rate of change of submembrane calcium concentration ([Ca2+]s) is dependent
on inflow of calcium ions (ICa), transport into the central space and binding to low affinity
([Ca2+]ls) and high affinity ([Ca2+]hs) buffers. Free calcium in the central space ([Ca2+]f )
is dependent on high affinity ([Ca2+]hf ) and low affinity ([Ca2+]lf ) buffers.

Secondly, we investigated the role of Kamiyama et al.’s Jhv variable. This
variable represents the light input to the rod cell in activated rhodopsin
per second (Rh*/s). Specifically, we examined the relationship between Jhv
and membrane voltage (the output of the model) as shown in Figure 4.
Notice that the voltage response is a sigmoidal showing hyperpolarization
of the membrane potential with increased light input. Steady ouput was
achieved after 40 seconds of lihgt. Figure 4 represents the steady state voltage
depolarization value given a constant input of light. Notice that Jhv was given
across several magnitudes of light. This model is an accurate representation
of the rod photoreceptor; rods will hit their response threshold when light
intensity is too strong. The relationship between Jhv and membrane voltage
thus exhibits a saturating response.

We also performed a full sensitivity analysis of the model parameters.
Given an input light value of 1000 Rh*/s, we perturbed each individual pa-
rameter by a coefficient of 0.001 and recorded the change in voltage. Table
2.1 shows the effects of these parameter manipulations on membrane poten-
tial. Note that the parameters holding the most weight over the output are
reversal potentials. In particular, the hyperpolarization activation reversal
potential most contributes to voltage response when the input is 1000 Rh*/s.
The hyperpolarization activated current has been shown to contribute sig-
nificantly to the recovery time after rod hyperpolarization ([7], [10], [10]).
Moreover, with a perturbation at one percent, a resultant change in volt-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: The reproduced first figure from Kamiyama et al. ([10]) using our replication of
their model. The stimuli consisted of 20 ms flashes starting at time 1.0 s. The intensities
were 1, 2, 5, 10, 10, 50, 100, 200, 500, and 1000 Rh*/s. (a) shows the photoresponse of
the rod, (b) shows the photoresponse of the rod created by the phototransduction process,
and (c) displays the hyperpolarization activated current. The rest are shown as follows:
(d) the Calcium current, (e) Calcium activated chloride current, (f) Calcium activated
potassium current, (g) rate of change of shell calcium with respect to time (h) Leakage
current (i) potassium current that acts as a delayed rectifier.
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Figure 4: A plot showing the relationship between the input and output of the model. Jhv
is shown in logs of light (in RH*/s) and Voltage is in milliVolts.

age of less than 0.2 mV demonstrates a stable model: no one parameter
contributes too significantly to the output.

Parameter Impact on Voltage
E h 0.1752
E l 0.1604
E k 6.9400E-2
g l 6.2600E-2
Cl h 2.6201E-2
g kc 1.4501E-2
g kv 1.09E-2
c 0 5.8999E-3
ca e 5.0001E-3
E cl 4.7996E-3

Table 1: The top ten parameters that contribute most to voltage response.
Each parameter was individually manipulated by .1% and the resulting
voltage response was recorded. The change in voltage is shown in the

second column. Normally 1000 Rh*/s create a steady voltage response of
−46.9305 mV.
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3. Population Structure

Several previous contributions to rod networks align rods in a Cartesian
layout ([15], [10]). For this particular population structure, every cell has
four neighbors. There exists a cell above, below, left and right of the ON-
center rod cell. An exception exists for cells along the boundaries of the
population. These cells have three neighbors. Figure 5 shows our Cartesian
grid of rods.

(a) (b) (c)

Figure 5: (a) shows the traditional Cartesian layout for rod population models. (b) shows
the hexagonal structure we created for our model. (c) shows a rod and cone mosaic from
Jeon et al. [20]. The cones are the dark spots, whereas the rods are the more or less
polygonal white shapes. Note how (b) is similar in layout to the mosaic.

However, mosaics of the photoreceptor layer in the retina reveal rods are
organized in a honeycomb pattern. In the pursuit of a more biologically and
anatomically correct model, we distributed our cells in a hexagonal manner,
following the model nature provides in mosaics of the retina. Every cell now
has six adjacent cells, except those along the boundaries of the population.
These cells have either three or four neighbors, depending on their placement
along the boundary. Figure 5 shows our hexagonal population structure.

Both Hexagonal and Cartesian population simulations were performed
using Matlab (Mathworks).

4. Results and Discussion

As in previous research, we first arranged the cells onto a Cartesian grid.
Each cell was individual; there was no coupling and therefore no communi-
cation of ionic currents among the population. We interpolated a greyscale
image of the Mona Lisa onto various cell population sizes to better under-
stand individual rod reaction within a population. Without coupling, each
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reaction should depend solely on the light input for each rod. Figure 6 shows
the result of this interpolation; each image is presented next to our interpre-
tation. Notice, our representation of the Mona Lisa shows dark pixels along
the coordinates that are actually brightest in the photo. For example, the
face and chest are the brightest aspects of the image, but our representation
shows these areas as the darkest. This is purposeful. We wished to accu-
rately represent rod cell behavior upon an encounter with light. Because rod
cells hyperpolarize upon photon absorption, we reproduced our image with
the darkest areas representative of the cells which most hyperpolarized upon
seeing the photo.

(a) 64 cell population. (b) 121 cell population.

(c) 256 cell population. (d) 529 cell population.

Figure 6: Non-coupled, Cartesian structure model population respresentation of the Mona
Lisa image. Note that the image becomes clearer as we model larger numbers of cells.

Similarly, the representation image clarity of our hexagonally structured
population hinged on the number of cells we modeled. However, we can
directly compare the result of the two population structures. Figure 7 shows
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the differences. While both representations are built with uncoupled rod
populations just over 500 cells, the hexagonal structure portrays a clearer
representation. In fact, the hexagonal representation includes the eyes of the
Mona Lisa. Clearly, hexagonal tiling offers the best available option for acute
modeling of rod cell reaction.

Figure 7: A comparison of the Cartesian and Hexagonal population structures. The
representation on the left is hexagonally built, whereas the representation on the right is
built using a Cartesian structure.

4.1. Gap Junction Coupling

As stated earlier, our research goal was to determine the contribution of
gap junctions to the visual process.

Gap junction coupling was coded by creating a large matrix, G, of gap
junction conductances. Ggap is a variable that holds the gap junctional con-
ductance (nS) between neighboring rods i and j in the G matrix at the
position Gi,j. For simplicity, we originally assumed Ggap value was uniform
across all neighboring rods.

Intuitively, gap junctions appear contradictory to clear vision. Since rods
encode incident light intensity within their membrane potential and gap junc-
tions average neighboring cell voltages, this could cause issues in vision. For
example, imagine the visual process that occurs upon seeing a white bar in
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front of a black background. Each rod is responsible for encoding a specific
point in the image. Rods responsible for encoding the edges of the white
bar are particularly important. Gap junctions allow the rods responsible for
encoding the white bar edge to communication ionic currents with rods en-
coding the black background. Predictably, this could blur the edges of the
white bar. We can assume this type of image distortion is not beneficial
for sight. Figure 8 shows the effect of various levels of gap junction cou-
pling strength on image representation. As coupling becomes stronger, rods
present an increasingly blurry image to the bipolar cells.

Figure 8: As Ggap value (nS) increases, the representation of the Mona Lisa becomes
increasingly blurry.

We recognized parameter uniformity across the population of cell mod-
els was biologically inaccurate, as no two cells across biology are precisely
the same in all dimensions. Concurrently, we recognized that gap junction
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coupling improves the signal to noise ratio in electrical signaling in dim light
conditions ([14],[3], [15]). We theorize that gap junction coupling can also
contribute to improved signal to noise ratio when noise is caused by param-
eter variation across the population of retinal rods. Thus, we manipulated
every parameter across a Gaussian distribution of several different coeffi-
cients of variation. Parameter variation did not encompass spatial structure.
Figure 9 shows an array of image representations presented by a rod popu-
lation of 512 cells. Rows are arranged according to rising Ggap strength and
columns are arranged along several different Gaussian distributions. While
images at the extremes are extraordinarily pixelated or blurry, we find that
the image indexed at the second row and second column may offer the best
signal to noise ratio.

Figure 9: An array of Mona Lisa representations from a hexagonally structured, 512 cell
population. Gap Junction strength (nS) increases along the row and coefficent of variation
increases across the columns. Note that 1e− 2 equals 1% of variation for each parameter.

At best, Figure 9 offers an impression of the effect gap junctions and pa-
rameter variation hold on rod response. However, we want to quantitatively
and concretely prove that noise due to parameter variation is abated through
gap junction coupling. Figure 10 exhibits the empirical relationship between
coupling and parameter noise.

Figure 10 shows a histogram of the steady state membrane voltage values
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from individual rods whose parameters where manipulated according to a
10% Gaussian variation when exposed to a continual stream of light (1000
Rh*/s). Now, without parameter variation, these rods should return the
same voltage output because they all receive the same, constant level of light
input. Due to parameter variation, voltage values range from -28 to -40 mV
across the uncoupled population. However, once we introduce coupling, we
see voltage values only range from -34 mV to -36 mV. Thus, we have evidence
that coupled rods nearly nullify the effect of noise due to parameter variation
in photovoltage response.

12



steady membrane voltage [mV]
-42 -40 -38 -36 -34 -32 -30 -28

n
u
m
b
e
r
 
o
f
 
n
e
u
r
o
n
s
 
(
 
/
 
1
1
0
 
)

0

10

20

30

40

50

60

70

80

90
coupling
no coupling

Figure 10: A histogram displaying the effects of coupling (in blue) and no coupling (in
yellow). When parameters are distributed throughout the population according to a Gaus-
sian variation of 10%, coupling clearly shortens the range of membrane voltage output.
Each rod received a uniform light input of 1000 Rh*/s

4.2. Weakness and Assumptions

Clearly, results of our population model hinge on characteristics of the
individual cell model. Thus, deficiencies, diseases and more complex pho-
totransduction processes can be difficult to model across the population of
rods. While the single cell model can accurately reproduce voltage and cur-
rent responses of an isolated photoreceptor, Kamiyama et al. [10] admitted
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that perhaps a multi- compartment model might better express the flow of
currents through the inner segment or synaptic terminal. However, we found
this single cell model an adequate foundation model for our population model.

When modeling, assumptions must of course be made and are subject to
critique. Our model is no exception. Presenting an image to our population
of rods was an area which provided many assumptions.

We assumed the collecting area of a rod outer segment is uniformly 0.43
um2 across the population. Also, we assumed that every photon striking a
rhodopsin activates that rhodopsin. Invergo et al. [5] used similar assump-
tions in the creation of their rod photoreceptor model. However, one half of
photons traveling along a rod outer segment are absorbed. Furthermore, of
that one half, an absorbed photon elicits rhodopsin activation and electrical
response with a probability of two thirds [21]. We were keen to find how
a rod population reacts after a rhodopsin has been activated, and therefore
did not include these findings in our assumptions. Inclusion of these findings
could allow for better description and modeling of the events that cause the
phototransduction process across a rod population.

We assumed that the light intensity value striking the center of each cell
represents the average strength of light cascading across the cell. Perhaps
a better determination of the light value would involve finding the average
light intensity. To find the average light intensity across an individual cell,
calculation of the values striking the edges of the cell, as well as the center,
would have been necessary. Only then could we calculate the average of these
light intensities.

In both the hexagonal and Cartesian layout, we can simulate around 500
rod cells in a population. To expand our population model, and thus provide
a closer estimate of the full retinal rod network in vertebrates, we need to
develop high performance implementations.

4.3. Further Directions

Future directions for study in this project include changing the verte-
brate model to a mammalian model. Experimental studies on retinal dy-
namics are increasingly centered on mouse retina [22], thus converting the
vertebrate model to a mammalian model would prove beneficial to the scien-
tific community. Additionally, this study offers an opportunity to model rod
photoreceptor diseases across a population. For example, with minimal mod-
eling and some parameter adjustment, this model could provide quantitative
description of diseases such as night blindness.
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Appendices
A. Appendix A

Appendix A shows the single rod cell model introduced by Kamiyama et
al. in 1996, 2009. It can be found in full detail [10].

Voltage membrane equation:

Iall = Iphoto + Ih + IKv + ICa + ICl(Ca) + IK(Ca) + IL + Iex + Iex2 (1)

Cm
dV

dt
= −Iall (2)

Cm = 0.02 V (0) = −36.186 (3)

Photocurrent model in [10], from [4]

dRh

dt
= Jhv − α1 ∗Rh+ α2 ∗Rhi (4)

dRhi
dt

= α1 ∗Rh− (α2 + α3) ∗Rhi (5)

dTr

dt
= ε∗Rh∗(Ttot−Tr)−β1∗Tr+τ2∗PDE−τ1∗Tr∗(PDEtot−PDE) (6)

dPDE

dt
= τ1 ∗ Tr ∗ (PDEtot − PDE) − τ2 ∗ PDE (7)

dCa

dt
= b ∗ J − γCa ∗ (Ca− C0) − k1 ∗ (eT − Cab) ∗ Ca+ k2 ∗ Cab (8)

dCab

dt
= k1 ∗ (eT − Cab) ∗ Ca− k2 ∗ Cab (9)

dcGMP

dt
=

Amax

1.0 + (Ca/Kc)4
− cGMP ∗ (V + σ ∗ PDE) (10)

J =
Jmax ∗ (cGMP )3

cGMP 3 + 103
(11)

Iphoto = −J ∗ (1.0 − exp
V − 8.5

17.0
) (12)
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Figure 11: Ionic current Model from [10]

19



Figure 12: Intracellular Calcium system from [10]
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