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Abstract
In nature, there are many predator-prey relationships. And we can easily tell which is the predator
and which is the prey. However, in some stories, for instance, eagle and snake, we know that
eagles catch snakes, while snakes steal eagles’ eggs. Since the interaction is more complex, we
can’t easily tell who eat whom. And we name this kind of interaction Reciprocal Predation. This
report is about some interesting properties of this Reciprocal Predation.[1]

1 A list of work done
· Development of our model for reciprocal predation
· An interesting phenomenon: Population Increase via Reciprocal Predation
· Investigation of evolutionary stability of reciprocal predation behavior

2 Introduction of our 5D system
As discussed in the abstract, reciprocal predation deals with three types of creatures: eagles, snakes
and eggs of the eagles. To expand our model, we name eagles as critters and snakes as varmits. So
basically, critters are the predators and varmits are the preys. Critters also lay eggs, while varmits
hunt for these eggs. Also, we separate critters and varmits into two types: hungry and sated. In
this model, we believe there should be some advantages to become sated. So the death rate for the
sated are zero, which means that sated will never die, but they will die when they become hungry.
The following is our model[3]:

Ė =−δE E−νE +BS− εkhE (1)

Ḣ = νE−δH H +MS+BS− ΦH
1+H/K

− εrkhH (2)

Ṡ =−BS−MS+
ΦH

1+H/K
+ εrkhH (3)

ḣ =−δhh+µs+2β s− φh
1+h/k

− εKhE− εrKhH (4)

ṡ =−β s−µs+
φh

1+h/k
+ εKhE (5)

Coordinates E is the number of eggs;
H is the number of hungry critters;
S is the number of sated critters;
h is the number of hungry varmits;
s is the number of sated varmits.

Parameters δE ,δH ,δh are death rate of critters’ eggs, hungry critters, and hungry varmits. B, β

are birth rate of critters and varmits. The hungry will eat and become sated at the eating rate. Φ,φ
are the eating rate of critters and varmits. The sated will also metabolize and become hungry at the
metabolism rate. M, µ are the metabolism rate for critters and varmits. The eggs will be hatched at
the rate ν . K and k are the capacity of environment to sate the critters and varmits simultaneously.
So a single critter becomes sated at a rate Φ

1+H/K , φ

1+h/k for the varmit. r is the risk of hungry
varmits caught by critters when they go outside for eggs. ε is the rate of reciprocal predation.
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3 Population Increase via Reciprocal Predation (PIRP)
The population increase discussed here is under the condition of weak predation, when ε is super
small. By setting time derivatives equal to zero in Equations (1)-(5) and taking derivatives with
respect to ε about zero, we obtain the condition for parameters to have population increase under
weak predation:[4]

δH
ν
(1+M

B )[1+2 δH
B

δH
Φ
(1+M

B )(1+ δE
ν
)2]

1+2 δH
B (1+ δE

ν
)

< r <
δH
ν
(1+2 δh

β
)

(1+ µ

β
)[1+2 δh

β

δh
φ
(1+ µ

β
)]

When r falls into this range, the biomass for critters (H + 2S) and varmits (h + 2s) will both increase
when ε is small.

The parameter setting for the following graphs are: Φ = φ = 64, all death rate are 2, all the other
parameters other than ε , r are 1. The PIRP condition for this setting is: 1 < r < 4.

Figure 1: Variation of varmit biomass (h + 2s) and adult critter biomass (H + 2S) with predation
strength ε , for various rates of egg-stealing success, r. The r = 2 and r = 3 values lie in the PIRP
regime, where both biomasses increase for small ε . As predation strength increases, either critters
or varmits ultimately vanish.

4 7D system with intraspecies competition
As we can see from the above 5D equations, if ε = 0, there is no interaction between critters and
varmits. We then have the idea to consider varmits of different types with different willingness to
go outside to hunt for critters’ eggs. The different willingness will be shown as different ε . To
simplify this model, we basically have two phenotypes (observable behavior) of varmits.

The two phenotypes are egg-eaters (h1,s1) and non-egg-eaters (h2,s2). The egg-eater will go out-
side for critters’ eggs, while the non-egg-eaters prefer to stay away from the critters and just get the
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resource from the environment. Both of these two phenotypes will eat from the same environment,
so they have the intraspecies competition against each other. The following is our 7D model with
intraspecies competition.

Ė =−δE E−νE +BS− εkh1E (6)

Ḣ = νE−δH H +MS+BS− ΦH
1+H/K

− εrkh1H (7)

Ṡ =−BS−MS+
ΦH

1+H/K
+ εrkh1H (8)

ḣ1 =−δhh1 +µs1 +2β s1−
φh1

1+(h1 +h2)/k
− εKh1E− εrKh1H (9)

ṡ1 =−β s1−µs1 +
φh1

1+(h1 +h2)/k
+ εKh1E (10)

ḣ2 =−δhh2 +µs2 +2β s2−
φh2

1+(h1 +h2)/k
(11)

ṡ2 =−β s2−µs2 +
φh2

1+(h1 +h2)/k
(12)

The only two difference between this 7D system and the original 5D system are: two more equa-
tions for non-egg-eaters (h2,s2); the intraspecies competition inside varmits, which is shown in the
eating rate as φ

1+(h1+h2)/k .

Questions of interest Now we have two varmit phenotypes in the environment, we might ask
the question which type will finally take over or these will two types just coexist in the same area?
This is the question of evolutionary stability of the varmits’ behavior. Once one type has already
taken over, if some day in the future, some of this type change their habit and become the other
type, will this little change make the winning situation flip over? In the next part, we will run the
numerical method to explore this 7D system.

4.1 Numerical analysis

4.1.1 Numerical simulation

Here we give one parameter setting. In this setting, we fix everything except r (the risk hungry
varmits exposed to critters when they hunt for eggs). Φ = 256,φ = 64,M = µ = 1, all the death
rates are 2 and all the parameters other than ε and r are 1. ε = 0.01, since ε should be super small.
And r is the free parameter.

Case 1: r = 1.1 This r gives the result of winning of non-egg-eater.

Figure 2: The left one is a figure of the total number of egg-eaters (blue for h1, red for s1) and the
right one is a figure of the total number of non-egg-eaters (blue for h2, red for s2). Here we can see
that finally non-egg-eaters survive, while all egg-eaters die out.
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Case 2: r = 0.5 This r results the winning of egg-eater.

Figure 3: The left one is a figure of the total number of egg-eaters (blue for h1, red for s1) and the
right one is a figure of the total number of non-egg-eaters (blue for h2, red for s2). Here we can see
that finally egg-eaters survive, while all non-egg-eaters die out.

In case 1, r is 1.1 and results the winning of non-egg-eater. In case 2, r is 0.5 and results the
winning of egg-eater. By intuition, we might believe larger risk will be harmful for the egg-eaters,
while beneficial to the non-egg-eaters. So we can guess there is a critical rc where the winning
situation will change. In the next part, we will run Matcont (a package in Matlab for numerical
bifurcation analysis) to draw the bifurcation diagram.

4.1.2 One parameter bifurcation diagram

We still have the same setting as the above: Φ = 256,φ = 64,M = µ = 1, all the death rates are 2
and all the parameters other than ε and r are 1. ε = 0.01, since ε should be super small. And r is
the free parameter.

Figure 4: This is the equilibrium continuation for
the egg-eater winning equilibrium. The dashed
part is unstable, while the solid part is stable.

Figure 5: This is the equilibrium continuation
for the non-egg-eater winning equilibrium. The
dashed part is unstable, while the solid part is sta-
ble.

In the above two figures, the free parameter, r factor, is the risk r. The dependent coordinates are
the number of related varmits. The bifurcation point in both two figures are at r = 1. When r < 1,
egg-eaters finally take over. When r > 1, non-egg-eater finally take over. When r = 1, the system
gives some chaotic result: you stay wherever you start.

4.2 Analytical solution
Obviously, there are several kinds of equilibrium, like equilibrium without egg-eaters, equilibrium
without non-egg-eaters or even equilibrium without critters. However, since we focused most our
attention on the intraspecies competition, we do not care the equilibrium without critters. The
following are the three cases to induce different equilibrium.
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Case 1: r = δHβ

ν(β+µ) (Deduced system) This is quite a special case. The system is deduced to
some lower dimension, but is all solved. The vertical line in the bifurcation diagram now makes
sense since in this case and h1 can be anything.

Notice that the right hand side of this relation only contains 4 parameters: δH ,µ,ν and β . This is
also the condition where the bifurcation occurs.

Case 2: r 6= δHβ

ν(β+µ) and h2 6= 0 (Winning of non-egg-eater) In this case, h1 = 0. So we only
get the equilibrium without egg-eaters. This is easy to calculate and David has already solved it. I
just borrowed it from his report of September, 2011. It is on the top of page 4.

H0 = K[
Φ

δH
· 1

1+M/B
· 1

1+δE/ν
−1] (13)

E0 =
δH

ν
H0 (14)

S0 =
δH

B
(1+

δE

ν
)H0 (15)

h2 = k[
φ

δh
· 1

1+µ/β
−1] (16)

s2 =
δh

β
h2 (17)

Case 3: r 6= δHβ

ν(β+µ) and h2 = 0 (Winning of egg-eater) This is just the case when the non-egg-
eater vanishes. It is exactly the same as the above original 5D system.

C1 =
(β+µ)

β
εrK2− ε

δH
ν

K2

C2 =
β+µ

β
δh

C3 =
(B+M)δH

Bν
εk2− εrk2

C4 =
(B+M)δH(δE+ν)

Bν

αh = (C2−C1)C3

ζh =C1Φ+(C2−C1)C4−φC3 +(C2−C1)C3

γh =C1Φ−C4φ +(C2−C1)C4

αH = (C4−C3)C1

ζH =C3φ +(C4−C3)C2−ΦC1 +(C4−C3)C1

γH =C3φ −C2Φ+(C4−C3)C2

h1± = k[
−ζh±

√
ζh

2−4αhγh

2αh
] (18)

H± = K[
−ζH±

√
ζH

2−4αHγH

2αH
] (19)

4.3 Stability
Since we have already solved the whole system, we can move on to the stability of different equi-
librium. This part is solving the determinant of a 7x7 matrix. The calculation is annoying but the
result is simple. The determinant for both equilibrium is linearly to the factor r · ν(β+µ)

δHβ
−1. So the

stability is exactly the same shown in the above bifurcation diagram. In our model, the stability
of equilibrium is the evolutionary stability of the winning situation. So we will use evolutionary
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stability in the conclusion of this section.

r · ν(β+µ)
δHβ

−1 < 0: winning of egg-eater is evolutionary stable; winning of non-egg-eater is evolu-
tionary unstable.

r · ν(β+µ)
δHβ

−1 > 0: winning of non-egg-eater is evolutionary stable; winning of egg-eater is evolu-
tionary unstable.

5 A graph that contains everything
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Figure 6: This is a graph of r-factor against biomass of different creatures. Here r-factor is r ·
ν(β+µ)

δHβ
. Obviously, we can see that when r-factor is 1, there is the change of stability (solid to

dashed or dashed to solid). The two red numbers on the x-axis are the condition for PIRP. When
the r-factor falls into this range, biomass of critters and varmits will increase at the same time if
the reciprocal predation is weak.

6 Conclusion
As we can see from the above graph, when r factor falls into the PIRP range, the evolutionary
stability of either winning situation is unsure. By intuition, we always believed that the beneficial
behavior is evolutionary stable (unable to be invaded by other changes). However, here in this
model, we see that even we have the population increase for both critters and varmits (PIRP),
which is beneficial to both species, the winning situation can be either evolutionary stable or not.
This is new to the evolutionary theory.
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