THE (4,3) PROPERTY IN FAMILIES OF FAT SETS IN THE PLANE

SHILIANG GAO AND SHIRA ZERBIB

ABSTRACT. A family of sets satisfies the (p, q) property if among any p members of it some q intersect. A set $S \subset \mathbb{R}^2$ is r-fat for some $0 < r \leq 1$, if there exists a point $c \in S$ such that $B(c, r) \subseteq$ $S \subseteq B(c, 1)$, where B(c, r) is a disk of radius r with center-point c. For $\sqrt{8} - 2 \leq r \leq 1$ we prove that the piercing number of every family of r-fat sets in \mathbb{R}^2 that satisfies the (4, 3) property is at most 4. This generalizes the bound of 3 on the piercing numbers of 1-fat sets satisfying the (4, 3) property, which was proved by Kynčl and Tancer [9]. This research was done as part of an REU project at the University of Michigan, Summer 2017.

1. INTRODUCTION

1.1. The (p,q) problem. The classical theorem of Helly [5] asserts that if \mathcal{F} is a family of convex sets in \mathbb{R}^d , such that every d+1 members of \mathcal{F} intersect, then all the members of \mathcal{F} intersect, namely, there exists a point in \mathbb{R}^d piercing every set in \mathcal{F} . Helly's theorem initiated the broad area of research in discrete geometry, dealing with questions regarding the number of points needed to pierce families of convex sets in \mathbb{R}^d satisfying certain intersection properties.

Given integers $p \ge q > 1$, a family \mathcal{F} of sets is said to satisfy the (p, q)property if among any p elements in \mathcal{F} there exist q elements with a nonempty intersection. We denote by $\tau(\mathcal{F})$ the piercing number (also called in the literature covering number, stubbing number, or hitting number) of \mathcal{F} , namely the minimal size of a set of points in \mathbb{R}^d intersecting every element in \mathcal{F} . The matching number of \mathcal{F} , namely the maximum number of pairwise disjoint sets in \mathcal{F} , is denoted by $\nu(\mathcal{F})$. Clearly, $\nu(\mathcal{F}) \le \tau(\mathcal{F})$. If $\nu(\mathcal{F}) = 1$ then we say that \mathcal{F} is an intersecting

This research was partly supported by the New-England Fund, Technion.

family. Note that $\nu(\mathcal{F}) \leq p-1$ if and only if \mathcal{F} satisfies the (p, 2) property.

Helly's theorem says that if a family \mathcal{F} of convex sets in \mathbb{R}^d satisfies the (d+1, d+1) property, then $\tau(\mathcal{F}) = 1$. Finding the piercing numbers of families of sets in \mathbb{R}^d satisfying the (p, q) property has been known in the literature as the (p, q) problem.

In 1992 Alon and Kleitman [1] resolved a long standing conjecture of Hadwiger and Debrunner [4], proving that for every $p \ge q \ge d+1$ there exists a constant c = c(d; p, q) depending only on d, p, q, such that if a family \mathcal{F} of convex sets in \mathbb{R}^d satisfies (p, q) property then $\tau(\mathcal{F}) \le c$.

In general, the upper bounds given by Alon and Kleitman's proof for c(d; p, q) are far from being optimal. For example, the Alon-Kleitman proof gives $c(2; 4, 3) \leq 253$; however, in [8] Kleitman, Gyárfás and Tóth proved that at most 13 points are needed to pierce a family of convex sets in \mathbb{R}^2 that satisfies the (4, 3) property. Over the last few decades extensive research has been done to improve the Alon-Kleitman bounds, see e.g., [8, 9, 7, 10]. For an excellent survey on the (p, q) problem we refer the reader to [3].

Of course, there does not exist a general bound on $\tau(\mathcal{F})$ when \mathcal{F} is an intersecting family of convex sets in \mathbb{R}^2 , as is exemplified by a family of lines in general position. However in some cases, when \mathcal{F} consists of certain "nice" sets, a constant bound on the piercing number can be proved. One such example is a result by Danzer [2], who proved that an intersecting family of disks in \mathbb{R}^2 has $\tau(\mathcal{F}) \leq 4$. A generalization of this result for certain families of homothets in the plane was proved by Karasev [6].

1.2. The (4,3) property in \mathbb{R}^2 . Here we investigate the piercing numbers of families of sets in \mathbb{R}^2 satisfying the (4,3) property. Let As mentioned above, in [8] it was proved that the piercing numbers in families of sets in \mathbb{R}^2 satisfying the (4,3) property is at most 13. However, there is no known example os such a family with $\tau > 3$.

It seems that improving the bound on c(2; 4, 3) for general families of convex sets is a hard task. However, bounds on the piercing number $\tau(\mathcal{F})$ can be significantly improved if one considers only certain restricted families \mathcal{F} of sets in the plane which satisfy (4, 3)-property. For example, Kynĉl and Tancer proved in [9] that if \mathcal{F} is a family of unit disks that satisfies the (4, 3) property, then $\tau(\mathcal{F}) \leq 3$, and this bound is tight.

Other types of set families \mathcal{F} satisfying the (4,3) property that were proved in [9] to achieve $\tau(\mathcal{F}) \leq 3$ are families of translations of a triangle in \mathbb{R}^2 and families of segments in \mathbb{R}^d .

3

Given a centrally symmetric body B in \mathbb{R}^2 and $0 < r \leq 1$, a *r*-homothet of B is a set tB + u for some $r \leq t \leq 1$ and $u \in \mathbb{R}^2$. Danzer [2] proved that a family of disks in \mathbb{R}^2 that satisfies the (2, 2) property has $\tau(\mathcal{F}) \leq 4$. Karasev [6] showed that if \mathcal{F} is a family of $\frac{1}{2}$ -homothets of a centrally symmetric body in \mathbb{R}^2 that satisfy the (2, 2) property then $\tau(\mathcal{F}) \leq 3$. These results imply:

Theorem 1.1. If \mathcal{F} is a family of disks in \mathbb{R}^2 satisfying the (4,3) property then $\tau(\mathcal{F}) \leq 5$.

Theorem 1.2. If \mathcal{F} is a family of $\frac{1}{2}$ -homothets of a centrally symmetric body in \mathbb{R}^2 and \mathcal{F} satisfies the (4,3) property then $\tau(\mathcal{F}) \leq 4$.

Both theorems follow by applying the following simple observation to Danzer's and Karasev's results.

Observation 1.3. Let C be a collection of sets in \mathbb{R}^2 . If for every finite family $\mathcal{F} \subset C$ that satisfy the (2,2) property we have $\tau(\mathcal{F}) \leq c$ for some $c \geq 3$ then for every finite family $\mathcal{F} \subset C$ that satisfy the (4,3) property we have $\tau(\mathcal{F}) \leq c+1$.

Proof. Let $\mathcal{F} \subset \mathcal{C}$ be a finite collection of sets satisfying the (4,3) property. If |F| < 4 the observation is trivial. If \mathcal{F} contains at least 4 sets then $\nu(\mathcal{F}) < 2$, for otherwise a matching of size 3 together with any other set in \mathcal{F} is a collection of 4 sets violating the (4,3) property. If $\nu(\mathcal{F}) = 1$ then \mathcal{F} satisfies the (2,2) property and thus $\tau(\mathcal{F}) \leq c$. Suppose $\nu(\mathcal{F}) = 2$ and let A, B be two disjoint sets in \mathcal{F} . Then either every set in $\mathcal{F} \setminus \{A, B\}$ intersect A or every set in $\mathcal{F} \setminus \{A, B\}$ intersect B, for otherwise, if there exist $D, E \in \mathcal{F} \setminus \{A, B\}$ such that $D \cap A = E \cap B = \emptyset$, then A, B, D, E violate the (4,3) property. Assume without loss of generality that every set in $\mathcal{F} \setminus \{A, B\}$ intersect A. Thus $\mathcal{F} = \mathcal{F}_A \cup \mathcal{F}_{AB} \cup \{B\}$, where \mathcal{F}_A is the family of sets in \mathcal{F} intersecting A and not intersecting B, and \mathcal{F}_{AB} of sets in \mathcal{F} intersecting both A and B. Observe that \mathcal{F}_A must satisfy the (3,3) property, since otherwise a non-intersecting triple of sets in \mathcal{F}_A together with B violate the (4,3) property. Thus by Helly's theorem $\tau(\mathcal{F}_A) = 1$. Furthermore, $F_{AB} \cup \{B\}$ satisfy the (2, 2) property since if $E, D \in \mathcal{F}_{AB}$ are disjoint then A, B, E, D violate the (4,3) property. Thus $\tau(\mathcal{F}) \leq$ $\tau(F_{AB} \cup \{B\}) + \tau(\mathcal{F}_A) \leq c+1$, proving the observation. \square

1.3. **Our result.** In this work we further investigate the (4, 3) problem in \mathbb{R}^2 . To this end we define the notion of fat sets. A set $S \subset \mathbb{R}^2$ will be called *r*-fat for some number $0 < r \leq 1$ if there exists a point $c \in S$ such that $B(c,r) \subseteq S \subseteq B(c,1)$, where B(c,r) is the ball in \mathbb{R}^2 of radius *r* with center-point *c*. Thus a 1-fat set is a unit disk. Note that for r < 1 an *r*-fat set is not necessarily convex. Let $c_{fat}(r)$ denote the maximal piercing number in families of *r*-fat sets in \mathbb{R}^2 that satisfy the (4,3) property. In this terminology, Kynĉl and Tancer's result is the following:

Theorem 1.4 ([9]). We have $c_{fat}(1) = 3$.

In this REU project we extend Theorem 1.4 by proving bounds on the $c_{fat}(r)$ for $\sqrt{8} - 2 \le r < 1$. We prove:

Theorem 1.5. We have $c_{fat}(\sqrt{8} - 2) \le 4$.

In Section 2 we establish some preliminaries needed for the proof of this theorem, and the proof is then given in Section 3.

2. Preliminaries

For an r-fat set $S \subset \mathbb{R}^2$ let $c_S \in S$ be such that $B(c_S, r) \subseteq S \subseteq B(c_S, 1)$. Let \mathcal{F} be a family of r-fat sets in \mathbb{R}^2 satisfying the (4,3)-property. We may assume that $|\mathcal{F}| \geq 4$, for other wise Theorem 1.5 is trivial.

Let $A, B \in \mathcal{F}$ be such that $d := \operatorname{dist}(c_A, c_B) = \max_{D, E \in \mathcal{F}} \operatorname{dist}(c_D, c_E)$, where dist stands for the Euclidean distance. By rotating and translating \mathcal{F} we may assume that c_A is the origin and c_B is to the right of c_A , namely c_B is the point (d, 0).

We will need the following three simple lemmas.

Lemma 2.1. For every $D, E \in \mathcal{F} \setminus \{A, B\}$ we have $dist(c_D, c_E) \leq 2$.

Proof. The lemma is trivial if $d \leq 2$. If not, then $A \cap B = \emptyset$. If in addition $D \cap E = \emptyset$, then in the collection $\{A, B, D, E\} \subset \mathcal{F}$ no three of the sets intersect, violating the (4,3) property of \mathcal{F} . Thus D, E intersect, implying dist $(c_D, c_E) \leq 2$.

By the same arguments as in Observation 1.3 we have:

Lemma 2.2. If $A, B \in \mathcal{F}$ are disjoint then $\nu(\mathcal{F}) = 2$. Moreover, either A intersects every disk in $\mathcal{F} \setminus \{B\}$ or B intersects every disk in $\mathcal{F} \setminus \{A\}$.

Lemma 2.3. Let $F_i = B(c_i, r_i), 1 \le i \le n$ be disks in \mathbb{R}^2 with $r_i \le r_{i+1}$ for all $1 \le i \le n-1$.

- (1) If there exists $c \in \mathbb{R}_2$ such that such that $c_i \in B(c, r_1)$ for all $1 \leq i \leq n$, then $\bigcap_{i=1}^n F_i \neq \emptyset$.
- (2) If $\bigcap_{i=1}^{n} F_i \neq \emptyset$ then there exists $c \in \mathbb{R}^2$ such that $c_i \in B(c, r_n)$ for all $1 \le i \le n$.

4

5

FIGURE 1. R_1 is contained in the union of 4 disks of radii $\sqrt{8} - 2$ in Case 1.

Proof. (1) We have $\operatorname{dist}(c, c_i) \leq r \leq r_i$ for every $1 \leq i \leq n$, implying $c \in \bigcap_{i=1}^n F_i$. (2) Let $p \in \bigcap_{i=1}^n F_i$. Then for every $1 \leq i \leq n$ we have $\operatorname{dist}(p, c_i) \leq r_i \leq r_n$, implying $c_i \in B(p, r_n)$ for every i.

For $a \in \mathbb{R}$ let $H^+(a)$ and $H^-(a)$ denote the closed half planes above and below the line y = a, respectively. For $u, v \in \mathbb{R}^2$ let [u, v] denote the line segment connecting u and v.

3. Proof of Theorem 1.5

Define $C = \{c_F \mid F \in \mathcal{F}\}$. By Lemma 2.3, the proof of the first assertion in Theorem 1.5 will follow if we show that C is contained in the union of at most 4 disks of radii $\sqrt{8} - 2$.

Let $A, B \in \mathcal{F}$ and d be as in the previous section. If A, B intersect then $d \leq 2$, and thus $C \subset B(c_A, 2) \cap B(c_B, 2)$. If A, B are disjoint, then by Lemma 2.2 we may assume that B intersects every set in $\mathcal{F} \setminus \{A, B\}$, and thus $C \setminus \{c_A, c_B\} \subset B(c_A, d) \cap B(c_B, 2)$. We distinct three cases.

Case 1. $d \leq \sqrt{8}$ and there exists $F \in \mathcal{F}$ such that $c_F \in H^+(1.1)$. In this case, by Lemma 2.2 we must have $c_E \subset H^+(-0.9)$ for every $E \in \mathcal{F} \setminus \{A, B\}$. Therefore we have $C \subseteq R_1$, where

$$R_1 = \left(\left(B(c_A, \sqrt{8}) \cap B(c_B, 2) \right) \cup [c_A, c_B] \right) \setminus H^-(-0.9).$$

The theorem then follows since $R_1 \subset \bigcup_{i=1}^4 B(p_i, \sqrt{8} - 2)$, where $p_1 = ((\sqrt{8} - 2)\cos(0.24\pi), (\sqrt{8} - 2)\sin(0.24\pi)), p_2 = (2.01, 1.053), p_3 = (2.4972, -0.115)$ and $p_4 = (1.64, -0.33)$ (see Figure 1).

FIGURE 2. R_2 is contained in the union of 4 disks of radii $\sqrt{8} - 2$ in Case 2.

Case 2. $d \leq \sqrt{8}$ and for every $F \in \mathcal{F}$ we have $c_F \in H^-(1.1)$. In this case $C \subset R_2$, where

$$R_2 = \left(B(c_A, \sqrt{8}) \cap B(c_B, 2) \cap H^-(1.1) \right) \cup [c_A, c_B].$$

In this case our theorem follows from $R_2 \subset \bigcup_{i=1}^4 B(p_i, \sqrt{8} - 2)$, where $p_1 = ((\sqrt{8} - 2)\cos(0.24\pi), (\sqrt{8} - 2)\sin(0.24\pi)), p_2 = (1.5739, -0.6133), p_3 = (2.5357, -0.204)$, and $p_4 = (1.95, 0.7)$ (see Figure 2).

Case 3. $d > \sqrt{8}$. Here A, B are disjoint, and as before we assume without loss of generality that B intersect every set in $\mathcal{F} \setminus \{A, B\}$.

Let $\mathcal{F}_B \subset \mathcal{F}$ be the subfamily of sets in \mathcal{F} that do not intersect A, and let $\mathcal{F}_{AB} \subset \mathcal{F}$ be the subfamily of elements in \mathcal{F} intersecting both A and B. Then we have $\mathcal{F} = \mathcal{F}_B \cup \mathcal{F}_{AB} \cup \{A\}$. We further observe that since \mathcal{F} satisfies the (4,3) property, \mathcal{F}_B must satisfy the (3,3) property, and thus by Helly's theorem we have $\tau(\mathcal{F}_B) = 1$, implying $\tau(\mathcal{F}_B \cup \{A\}) = 2$.

Finally, note that for every $E \in \mathcal{F}_{AB}$ we have $c_E \in R_3$, where

$$R_3 = B(c_A, 2) \cap B(c_B, 2),$$

and $R_3 \subset B((\sqrt{2}, 2-\sqrt{2}), \sqrt{8}-2) \cup B((\sqrt{2}, \sqrt{2}-2), \sqrt{8}-2)$ (see Figure 3). Therefore, by Lemma 2.3, $\tau(\mathcal{F}_{AB}) \leq 2$. This completes the proof of the theorem.

 $\overline{7}$

FIGURE 3. R_3 is contained in the union of 2 disks of radii $\sqrt{8} - 2$ in Case 3.

Acknowledgment

We are grateful to the Department of Mathematics at the University of Michigan, Ann Arbor for supporting this REU project during the Summer semester, 2017.

References

- [1] N. Alon and D. Kleitman, Piercing convex sets and the hadwigder debrunner (p,q)-problem, Advances in Mathematics (1992), 103-112.
- [2] L. Danzer. Zur losung des gallaischen problems u?ber kreisscheib in der euklidischen ebene. Studia Sci. Math. Hungar., 21:111–134, 1986.
- [3] J. Eckhoff, A survey of the Hadwiger-Debrunner (p, q)-problem. Discrete and computational geometry, 347–377, Algorithms Combin., 25, Springer, Berlin, 2003.
- [4] H. Hadwiger and H. Debrunner, Über eine Variante zum Hellyschen Satz. (German) Arch. Math. (Basel) 8 (1957), 309-313.
- [5] E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jahresbericht der Deutschen Mathematiker-Vereinigung, 32 (1923), 175-176.
- [6] R. N. Karasev, Piercing families of convex sets with the d-intersection property in R^d, Disc. Comp. Geom. 39 (2008), no. 4, 766-777.
- [7] C. Keller, S. Smorodinski, G. Tardos, On max-clique for intersection graphs of sets and the Hadwiger-Debrunner numbers, in: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), to appear. Also available at: arXiv:1512.04026.
- [8] D. J. Kleitman, A. Gyárfás and G. Tóth, Convex sets in the plane with three of every four meeting, Combinatorica 21(2) (2001), 221-232.
- [9] J. Kynčl and M. Tancer, The maximum piercing number for some classes of convex sets with the (4, 3)-property. Electron. J. Combin. 15 (2008), no. 1.
- [10] S. Zerbib, The (p,q) property in families of *d*-intervals and *d*-trees. arXiv:1703.02939

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR *E-mail address*: shiliang@umich.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR *E-mail address*: zerbib@umich.edu