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Abstract. A family of sets satisfies the (p, q) property if among
any p members of it some q intersect. A set S ⊂ R2 is r-fat for
some 0 < r ≤ 1, if there exists a point c ∈ S such that B(c, r) ⊆
S ⊆ B(c, 1), where B(c, r) is a disk of radius r with center-point

c. For
√

8− 2 ≤ r ≤ 1 we prove that the piercing number of every
family of r-fat sets in R2 that satisfies the (4, 3) property is at most
4. This generalizes the bound of 3 on the piercing numbers of 1-fat
sets satisfying the (4, 3) property, which was proved by Kynčl and
Tancer [9]. This research was done as part of an REU project at
the University of Michigan, Summer 2017.

1. introduction

1.1. The (p, q) problem. The classical theorem of Helly [5] asserts
that if F is a family of convex sets in Rd, such that every d+1 members
of F intersect, then all the members of F intersect, namely, there
exists a point in Rd piercing every set in F . Helly’s theorem initiated
the broad area of research in discrete geometry, dealing with questions
regarding the number of points needed to pierce families of convex sets
in Rd satisfying certain intersection properties.

Given integers p ≥ q > 1, a family F of sets is said to satisfy the (p, q)
property if among any p elements in F there exist q elements with a non-
empty intersection. We denote by τ(F) the piercing number (also called
in the literature covering number, stubbing number, or hitting number)
of F , namely the minimal size of a set of points in Rd intersecting
every element in F . The matching number of F , namely the maximum
number of pairwise disjoint sets in F , is denoted by ν(F ). Clearly,
ν(F) ≤ τ(F). If ν(F) = 1 then we say that F is an intersecting
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family. Note that ν(F) ≤ p − 1 if and only if F satisfies the (p, 2)
property.

Helly’s theorem says that if a family F of convex sets in Rd satisfies
the (d+1, d+1) property, then τ(F) = 1. Finding the piercing numbers
of families of sets in Rd satisfying the (p, q) property has been known
in the literature as the (p, q) problem.

In 1992 Alon and Kleitman [1] resolved a long standing conjecture of
Hadwiger and Debrunner [4], proving that for every p ≥ q ≥ d+1 there
exists a constant c = c(d; p, q) depending only on d, p, q, such that if a
family F of convex sets in Rd satisfies (p, q) property then τ(F) ≤ c.

In general, the upper bounds given by Alon and Kleitman’s proof for
c(d; p, q) are far from being optimal. For example, the Alon-Kleitman
proof gives c(2; 4, 3) ≤ 253; however, in [8] Kleitman, Gyárfás and
Tóth proved that at most 13 points are needed to pierce a family of
convex sets in R2 that satisfies the (4, 3) property. Over the last few
decades extensive research has been done to improve the Alon-Kleitman
bounds, see e.g., [8, 9, 7, 10]. For an excellent survey on the (p, q)
problem we refer the reader to [3].

Of course, there does not exist a general bound on τ(F) when F is
an intersecting family of convex sets in R2, as is exemplified by a family
of lines in general position. However in some cases, when F consists of
certain “nice” sets, a constant bound on the piercing number can be
proved. One such example is a result by Danzer [2], who proved that
an intersecting family of disks in R2 has τ(F) ≤ 4. A generalization of
this result for certain families of homothets in the plane was proved by
Karasev [6].

1.2. The (4, 3) property in R2. Here we investigate the piercing num-
bers of families of sets in R2 satisfying the (4, 3) property. Let As men-
tioned above, in [8] it was proved that the piercing numbers in families
of sets in R2 satisfying the (4, 3) property is at most 13. However, there
is no known example os such a family with τ > 3.

It seems that improving the bound on c(2; 4, 3) for general families
of convex sets is a hard task. However, bounds on the piercing num-
ber τ(F) can be significantly improved if one considers only certain
restricted families F of sets in the plane which satisfy (4, 3)-property.
For example, Kynĉl and Tancer proved in [9] that if F is a family of
unit disks that satisfies the (4, 3) property, then τ(F) ≤ 3, and this
bound is tight.

Other types of set families F satisfying the (4, 3) property that were
proved in [9] to achieve τ(F) ≤ 3 are families of translations of a
triangle in R2 and families of segments in Rd.



THE (4, 3) PROPERTY IN FAMILIES OF FAT SETS IN THE PLANE 3

Given a centrally symmetric body B in R2 and 0 < r ≤ 1, a r-
homothet of B is a set tB + u for some r ≤ t ≤ 1 and u ∈ R2. Danzer
[2] proved that a family of disks in R2 that satisfies the (2, 2) property
has τ(F) ≤ 4. Karasev [6] showed that if F is a family of 1

2
-homothets

of a centrally symmetric body in R2 that satisfy the (2, 2) property
then τ(F) ≤ 3. These results imply:

Theorem 1.1. If F is a family of disks in R2 satisfying the (4, 3)
property then τ(F) ≤ 5.

Theorem 1.2. If F is a family of 1
2
-homothets of a centrally symmetric

body in R2 and F satisfies the (4, 3) property then τ(F) ≤ 4.

Both theorems follow by applying the following simple observation
to Danzer’s and Karasev’s results.

Observation 1.3. Let C be a collection of sets in R2. If for every
finite family F ⊂ C that satisfy the (2, 2) property we have τ(F) ≤ c
for some c ≥ 3 then for every finite family F ⊂ C that satisfy the (4, 3)
property we have τ(F) ≤ c+ 1.

Proof. Let F ⊂ C be a finite collection of sets satisfying the (4, 3)
property. If |F | < 4 the observation is trivial. If F contains at least
4 sets then ν(F) ≤ 2, for otherwise a matching of size 3 together
with any other set in F is a collection of 4 sets violating the (4, 3)
property. If ν(F) = 1 then F satisfies the (2, 2) property and thus
τ(F) ≤ c. Suppose ν(F) = 2 and let A,B be two disjoint sets in
F . Then either every set in F \ {A,B} intersect A or every set in
F \ {A,B} intersect B, for otherwise, if there exist D,E ∈ F \ {A,B}
such that D ∩ A = E ∩ B = ∅, then A,B,D,E violate the (4, 3)
property. Assume without loss of generality that every set in F\{A,B}
intersect A. Thus F = FA ∪ FAB ∪ {B}, where FA is the family of
sets in F intersecting A and not intersecting B, and FAB of sets in
F intersecting both A and B. Observe that FA must satisfy the (3, 3)
property, since otherwise a non-intersecting triple of sets in FA together
with B violate the (4, 3) property. Thus by Helly’s theorem τ(FA) = 1.
Furthermore, FAB∪{B} satisfy the (2, 2) property since if E,D ∈ FAB

are disjoint then A,B,E,D violate the (4, 3) property. Thus τ(F) ≤
τ(FAB ∪ {B}) + τ(FA) ≤ c+ 1, proving the observation. �

1.3. Our result. In this work we further investigate the (4, 3) problem
in R2. To this end we define the notion of fat sets. A set S ⊂ R2 will
be called r-fat for some number 0 < r ≤ 1 if there exists a point c ∈ S
such that B(c, r) ⊆ S ⊆ B(c, 1), where B(c, r) is the ball in R2 of
radius r with center-point c. Thus a 1-fat set is a unit disk. Note that
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for r < 1 an r-fat set is not necessarily convex. Let cfat(r) denote the
maximal piercing number in families of r-fat sets in R2 that satisfy the
(4, 3) property. In this terminology, Kynĉl and Tancer’s result is the
following:

Theorem 1.4 ([9]). We have cfat(1) = 3.

In this REU project we extend Theorem 1.4 by proving bounds on
the cfat(r) for

√
8− 2 ≤ r < 1. We prove:

Theorem 1.5. We have cfat(
√

8− 2) ≤ 4.

In Section 2 we establish some preliminaries needed for the proof of
this theorem, and the proof is then given in Section 3.

2. Preliminaries

For an r-fat set S ⊂ R2 let cS ∈ S be such that B(cS, r) ⊆ S ⊆
B(cS, 1). Let F be a family of r-fat sets in R2 satisfying the (4, 3)-
property. We may assume that |F| ≥ 4, for other wise Theorem 1.5 is
trivial.

LetA,B ∈ F be such that d := dist(cA, cB) = maxD,E∈F dist(cD, cE),
where dist stands for the Euclidean distance. By rotating and trans-
lating F we may assume that cA is the origin and cB is to the right of
cA, namely cB is the point (d, 0).

We will need the following three simple lemmas.

Lemma 2.1. For every D,E ∈ F \ {A,B} we have dist(cD, cE) ≤ 2.

Proof. The lemma is trivial if d ≤ 2. If not, then A ∩ B = ∅. If in
addition D ∩ E = ∅, then in the collection {A,B,D,E} ⊂ F no three
of the sets intersect, violating the (4, 3) property of F . Thus D,E
intersect, implying dist(cD, cE) ≤ 2. �

By the same arguments as in Observation 1.3 we have:

Lemma 2.2. If A,B ∈ F are disjoint then ν(F) = 2. Moreover, either
A intersects every disk in F\{B} or B intersects every disk in F\{A}.

Lemma 2.3. Let Fi = B(ci, ri), 1 ≤ i ≤ n be disks in R2 with ri ≤ ri+1

for all 1 ≤ i ≤ n− 1.

(1) If there exists c ∈ R2 such that such that ci ∈ B(c, r1) for all
1 ≤ i ≤ n, then

⋂n
i=1 Fi 6= ∅.

(2) If
⋂n

i=1 Fi 6= ∅ then there exists c ∈ R2 such that ci ∈ B(c, rn)
for all 1 ≤ i ≤ n.
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Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. R1 is contained in the union of 4 disks of
radii

√
8− 2 in Case 1.

Proof. (1) We have dist(c, ci) ≤ r ≤ ri for every 1 ≤ i ≤ n, implying
c ∈

⋂n
i=1 Fi. (2) Let p ∈

⋂n
i=1 Fi. Then for every 1 ≤ i ≤ n we have

dist(p, ci) ≤ ri ≤ rn, implying ci ∈ B(p, rn) for every i. �

For a ∈ R let H+(a) and H−(a) denote the closed half planes above
and below the line y = a, respectively. For u, v ∈ R2 let [u, v] denote
the line segment connecting u and v.

3. Proof of Theorem 1.5

Define C = {cF | F ∈ F}. By Lemma 2.3, the proof of the first
assertion in Theorem 1.5 will follow if we show that C is contained in
the union of at most 4 disks of radii

√
8− 2.

Let A,B ∈ F and d be as in the previous section. If A,B intersect
then d ≤ 2, and thus C ⊂ B(cA, 2)∩B(cB, 2). If A,B are disjoint, then
by Lemma 2.2 we may assume that B intersects every set in F\{A,B},
and thus C \ {cA, cB} ⊂ B(cA, d) ∩B(cB, 2). We distinct three cases.

Case 1. d ≤
√

8 and there exists F ∈ F such that cF ∈ H+(1.1).
In this case, by Lemma 2.2 we must have cE ⊂ H+(−0.9) for every
E ∈ F \ {A,B}. Therefore we have C ⊆ R1, where

R1 =
((
B(cA,

√
8) ∩B(cB, 2)

)
∪ [cA, cB]

)
\H−(−0.9).

The theorem then follows since R1 ⊂
⋃4

i=1B(pi,
√

8 − 2), where p1 =

((
√

8 − 2) cos(0.24π), (
√

8 − 2) sin(0.24π)), p2 = (2.01, 1.053), p3 =
(2.4972,−0.115) and p4 = (1.64,−0.33) (see Figure 1).
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Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. R2 is contained in the union of 4 disks of
radii

√
8− 2 in Case 2.

Case 2. d ≤
√

8 and for every F ∈ F we have cF ∈ H−(1.1). In
this case C ⊂ R2, where

R2 =
(
B(cA,

√
8) ∩B(cB, 2) ∩H−(1.1)

)
∪ [cA, cB].

In this case our theorem follows from R2 ⊂
⋃4

i=1B(pi,
√

8− 2), where

p1 = ((
√

8−2) cos(0.24π), (
√

8−2) sin(0.24π)), p2 = (1.5739,−0.6133),
p3 = (2.5357,−0.204), and p4 = (1.95, 0.7) (see Figure 2).

Case 3. d >
√

8. Here A,B are disjoint, and as before we assume
without loss of generality that B intersect every set in F \ {A,B}.

Let FB ⊂ F be the subfamily of sets in F that do not intersect A,
and let FAB ⊂ F be the subfamily of elements in F intersecting both
A and B. Then we have F = FB ∪ FAB ∪ {A}. We further observe
that since F satisfies the (4, 3) property, FB must satisfy the (3, 3)
property, and thus by Helly’s theorem we have τ(FB) = 1, implying
τ(FB ∪ {A}) = 2.

Finally, note that for every E ∈ FAB we have cE ∈ R3, where

R3 = B(cA, 2) ∩B(cB, 2),

and R3 ⊂ B((
√

2, 2−
√

2),
√

8−2)∪B((
√

2,
√

2−2),
√

8−2) (see Figure
3). Therefore, by Lemma 2.3, τ(FAB) ≤ 2. This completes the proof
of the theorem. �
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Figure 3 

 

Figure 3. R3 is contained in the union of 2 disks of
radii

√
8− 2 in Case 3.
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