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Abstract

Important infectious disease parameters such as the basic reproductive ratio, R0, and the in-
fectious period are often estimated from long time series data by statistical inference. These
estimated parameters have implications for how many doses of vaccine will be administered,
how serious the outbreak will be, and how many people will be infected. However it is unclear
how the underlying biological structures not explicitly included the mathematical model effect
these estimates. We conduct a novel simulation study that investigates how biases in a mathe-
matical model can lead to over estimation. We find that the bias introduced by under-reporting
is insignificant, but the bias introduced by age structure results in over estimations in R0 and
the infectious period. These findings add another perspective to the field of statistical inference
for disease models and suggests future work should focus on capturing these heterogeneities in
simple models.

1 Introduction

As the field of infectious diseases increasingly becomes more mathematical, researchers look for
ways to use various types of models to both explain biology and make predictions (Fraser et al.
2004; Hethcote 2000). The structure of these models vary greatly, from ordinary, partial, and
stochastic differential equations (Keeling and Rohani 2007). However, the need for accurate pa-
rameter values is constant between them. In general, parameters such as the basic reproductive
ratio, R0, the infectious period, 1

γ , and the transmission rate, β, are of particular importance
to biologists, epidemiologists, and policy decisions (Lessler et al. 2011; May et al. 2001). These
parameters are often extracted from time series data sets, and even though these time series
can be as fine as weekly data for 20 years, factors such as under-reporting and age structure are
frequently unknown in the data and subsequently not included in models. Under-reporting is
difficult to extract and estimate from the data due to its relatively random nature. Additionally,
under-reporting may vary with spatial location. Age structure also presents a difficulty as the
age of first infection varies in urban versus rural populations (Singh and Datta 1997). This type
of discrepancy may change estimates of the force of infection and is challenging to parametrize
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in a model.

For example, the measles virus has been studied extensively and there exists long time series data
(World Health Organization 2014), multiple mathematical models (Alexander et al. 2006; Bolker
1993; MacIntyre et al. 2002), and the disease itself often exhibits regular seasonal outbreaks.
Outside of a large scientific literature, measles is still responsible for 164,000 deaths worldwide,
although widely eradicated in the first world (Centers for Disease Control and Prevention 2013).
Additionally parameter estimates on measles time series data displays interesting deviations.
While currently accepted parameter values are R0=7-17 (Wallinga et al. 2001), β = 100 − 400
per year, and 1

γ=2 weeks, some studies have found significantly higher values, including an R0

range of 30 − 57 (He et al. 2010; Hooker et al. 2011; O. Bjornstad 2002). Although these high
estimates may support a legitimate feature of the biology, a question to be asked is how do
unobserved characteristics in the time series data manifest in the parameter estimates?

In general, the data for infectious disease incidence is skewed by under-reporting (Mette et al.
2011), and measles is no exception. The extent of under-reporting for measles ranges drastically
from a 1.26:1 ratio in Germany (Mette et al. 2011), to a 2.5:1 ratio in Italy (Filia et al. 2013),
up to a 22:1 ratio again in Italy (Ciofi Degli Atti et al. 2002), all the way up to 44 times higher
in Switzerland (Richard et al. 2008). Possible reasons for under-reporting range from viewing
the task as not important and a violation of privacy, to simply not knowing the reporting laws
and procedure (Hume 1980; Konowitz et al. 1984). Under-reporting for measles is a continued
problem (Filia et al. 2013), however it is not known how inference techniques are effected by this.

Although there exists data on infections per age (Singh and Datta 1997), and age structure
models of both pre- and post- vaccine era (Schenzle 1984) exist, it is unclear how discrete age
data effects parameter estimates. For example, measles is typically effects children under five
and is spread through direct contact, making the force of infection age dependent (McLean and
Anderson 1988), something that is not captured in the well mixed models.

With these questions in mind, we propose a simulation study following the same approach as
He et al. (He et al. 2010) in both our use of measles as a case study and our implementation of
iterated filtering techniques.

2 Methods and Models

Suppose we have a state process, Xt, an observation process, Yt where observations are made at
times t1, ..., tN , and a likelihood function f(Y1:tN |θ) = ΠtN

t=1f(Yt|Yt:t−1, θ) where θ is the param-
eter vector. From here, we can implement iterated filtering. Iterated filtering is a method to
maximize the likelihood function via letting the parameters take a random walk in time devel-
oped by Ionides et al. (Ionides et al. 2006). In general, the MIF algorithm works by first selecting
a starting parameter estimate θ̂, selecting a cooling fraction, an initial variance multiplier, and
the number of iterations and then slowing “squeezing” θ̂ through parameter space and taking
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the final iteration to be the maximum likelihood estimate (Ionides et al. 2006). This is a general
overview, and the specific algorithm, development, and convergence criterion and properties can
be found in (Ionides et al. 2011, 2006). A particularly important property is the plug and play
property, i.e. the data can be simulated without the need to know explicit transition properties
between states (Bret et al. 2009). These algorithms are implemented in the R package POMP

(Partially Observed Markov Process) by King et al. (King et al. 2014). All simulations are run
in the R programming language (R Core Team 2014).

In light of our original question – how do biases in the reported data effect the parameter
estimates – we use simulated data. Our general procedure is to create 40-80 years of simulated
data using an SIR model, keep only the reported cases class, and then use iterated filtering to
estimate parameters from only the last 20 years of simulated data using the basic SIR model
outlined in Figure 1. Using only a subset of the data allows us to capture the infection once it
has gotten into a cycle to avoid transient effects. This general formulation has the advantage
of being able to treat the time series as if it were “real” data while being able to see the true
parameter values, which can be seen in Table 1. We use two models to produce data – a
heterogeneous 30 compartment age structure model where transmission rate is based on contact
rate per compartment, and a basic no age structure SIR model, which we call “well mixed”.
For the basic well mixed model, we assume mass action, stochastic, seasonal transmission, i.e.
λ = β I+ιN

dW
dt (1 + 0.1 sin 2πt). Additionally for both models we specify a measurement model,

and the measurement model probability density function as required by the POMP package (King
et al. 2014). We use the following SIR model to produce the data for the 30 age groups.

Figure 1: SIR flow diagram.
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Parameter Input Values Description Units

β̄ 140 transmission rate for age model 1/yr
b0 140 transmission rate for well mixed model 1/yr
b1 0.1 seasonality scaling —
βi,j see text transmission rate for each age compartment —
θ 0-1 mixing parameter —
µ 1/70 death rate 1/yr
B 1/70 birth rate 1/yr
γ 14 recovery rate 1/yr
ρ 0.1− 1 reporting rate —
R0 10 basic reproductive rate —
ι 2-3 visiting infected —
N 106 number of individuals in the population —
σ 0.05-0.15 white noise intensity —
Nmif 50-200 number of MIF iterations —
Nparticle 500-104 number of particles used for MIF —

Table 1: Description and value of the parameters that we plug into the model to produce the
simulated data.

dSi
dt

= −
∑
j

βij
Ij + ι

Nj
Si
dW

dt

dIi
dt

=
∑
j

βij
Ij + ι

Nj
Si
dW

dt
− γIi

dRi
dt

= γIi

dIncidi
dt

= γIi for i = 1, 2, ..., 30

βi,j = β̄f(θ)(1− θ + θMi,j)(1 + 0.1 sin(2πt))

We generate the cases data from a binomial draw of the sum of the incidence data with report-
ing probability ρ and the white noise parameter dW

dt is drawn from a gamma distribution with
intensity σ.

For the 30 compartment model, we have population age classes, 0, 1,..., 19, 20-25,..., 60-65, 65+.
We begin with an population distribution of an equal number in each compartment multiplied by
how long one remains in that compartment. The initial conditions of Si and Ii begin at a steady
state value, with Si = BN

10 and Ii = B2Nγ where each is multiplied by how long one remain
in that compartment. For both the age structure model and the well-mixed model parameter
estimations we use the true S, I, R values as our initial conditions to avoid transient effects.

As we want to look at how age structure effects parameter estimates, we need to choose βi,j
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such that as we vary θ, which corresponds to different levels of heterogeneity, we keep a fixed
R0. For instance, θ = 1 corresponds to βi,j(1) = β̄(Mi,j) which is a completely heterogeneous
matrix. On the other hand, θ = 0 corresponds to βi,j(0) = β̄ which is a completely homoge-
neous matrix. This comes down to providing a scaling factor f(θ) in the next generation matrix

Gi,j = β̄
µ+γ f(θ)(1 − θ + θMi,j) where Mi,j = Ci,j

Ni
Nj

where Ci,j is the contact matrix provided

by Mossong et al. (Mossong et al. 2008). As R0 = ρ(G), where ρ is the spectral radius, we get

f(θ) = ρ(1−θ+θMi,j)
−1. This allows us to preserve R0 = β̄

µ+γ regardless of θ. This scaling also
has the advantage of preserving the average number of contacts each age group has independent
of θ. In the same way, for the basic SIR model we use the definition that R0 = β

γ+µ . As µ is

on the order of 10−2, we use the approximation R0 ≈ β
γ . Examples of the time series plots and

scaled contact matrices for various levels of heterogeneity used can be seen in Figure 2. Note
that for the contour plots in Figure 2, age versus age should be read as the amount of contact
age group A has with age group B.

Note that regardless of the level of mixing, the time series data consists of yearly outbreaks.
However, the well mixed, θ = 0, data has consistent peaks, where as the heterogenous data,
θ = 1, hits higher peaks and lower valleys. In the contact matrix plots matrix plots for the
heterogenous populations, contact within the age group is very common and corresponds to
school age. Additionally note that the contact matrix is not symmetric. While a non symmetric
contact is not immediately intuitive, an explanation is the example of a teacher having contact
with multiple young students, but the students not being in contact with as many adults.
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Figure 2: Simulated data for θ = 0, 0.5, 1. Both the time series plots and the scaled contact
matrix βi,j .

We simulate aging, births, and deaths with the following scheme, where we evaluate this at every
time step ∆t. This scheme allows us to simulate entry, exit, and movement between compart-
ments as a “trickle” process instead of a group movement process, i.e. not everyone will age by
a year at identical times. Note that as in the well-mixed model, the population remains constant.
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Qi =

{
Qi + ∆t(BN −Qi − µQi) if Q = S
Qi + ∆t(−Qi − µQi) if Q = I,R

for age 0

Qi = Qi + ∆t(Qi−1 −Qi − µQi) for ages 1,..., 19

Qi = Qi + ∆t

(
Qi−1

5
− Qi

5
− µQi

)
for ages 20-24, 25-29,..., 60-64

Qi = Qi + ∆t

(
Qi−1

5
− µQi

)
for ages 65+

Q ∈ {S, I,R}

Once we’ve produced the data from the 30 compartment model, we pool it together into single
S, I,R, incidences, and cases compartments. From here, we use a standard SIR model with
under-reporting to fit the generated data. We use the following numerical scheme to estimate
parameters based only on the combined cases compartment from the age model. This scheme
has the benefit of never allowing the populations to become negative while still being the first
order method. Using the standard SIR finite different scheme gives the possibility of allowing
certain compartments to become negative, thus making the binomial draw for cases result in
a NaN value. This is especially problematic for parameter estimation where certain parameters
may have to go through biologically unnatural regions of parameter space before settling to the
true value.

St+∆t = exp(−µ∆t)(BN∆t− St(1− exp(−λt∆t)))
It+∆t = exp(−µ∆t)(St(1− exp(−λt∆t))− It(1− exp(−γ∆t)))

Rt+∆t = exp(−µ∆t)(It(1− exp(−γ∆t)))

Incidt+∆t = It(1− exp(−γ∆t))

Cases ∼ binomial(Incid, ρ)

λt = β
dW

dt

It + ι

N
β = b0(1 + b1 sin 2πt)

Additionally the parameters to be estimated, γ, β, ρ, are transformed to prevent them from
entering regions of parameter space where they will attain non biologically accurate values. Pa-
rameters γ and β are log transformed while ρ is logit transformed.

As we want to estimate parameters we need to find the translation under this scheme. In contin-
uous time, the infectious period is estimated as IP= 1

γ . From here we know T
∆t ∼ geometric(p),

therefore E( T∆t) = 1−p
p where p = 1 − exp(−γ∆t). Then E(T ) = ∆t

exp(γ∆t)−1 ∼
1
γ + O(∆t).

Therefore, for sufficiently small ∆t, we can estimate our infectious period, IP, by 1
γ .
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3 Results

3.1 Under-Reporting

We begin by looking at the simplest case – under-reporting. We run the well mixed SIR model
while varying the under-reporting rate ρ and produce a data set for each ρ. From here, we use
iterated filtering to estimate b0, γ, and thus R0, as well as ρ. Note that b0 = mean(β) which we
use as our estimate for β. The idea with this section is to see if simple changes in the actual
reporting ratio will be enough to produce high estimates of other parameters, specifically R0.
The results are in Figure 3. In all plots the hat refers to the parameter estimate.

Figure 3: Results of estimating β, γ, ρ, and R0 from simulated data for various values of ρ. The
solid line represents the true input value for the parameter.
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Note that in this data, whenever there is an over estimate or under estimate of β, γ will also be
over estimated or under estimated in order to compensate, thus keeping R0 estimates within ±
of the true value. Additionally, parameter estimates for ρ are almost recovered exactly at every
step. These results indicate that in a well mixed population, assuming other parameters such
as birth and death rate are known, transmission and the infectious period can be recovered very
close to their true value. Therefore, within a homogeneous population, under-reporting ρ causes
almost no statistical bias, and R0 and infectious parameters can be estimated within 10% of
their original value.

3.2 Age Structure

Next we look at how age structure, specifically heterogeneities in the population effect our
parameter estimates. As noted before, regardless of the level of transmission heterogeneity, R0

remains fixed in the age structure model, as does reporting probability ρ. The results are in
Figure 4
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Figure 4: Results of estimating β, γ, ρ, and R0 from simulated data for various values of mixing
parameter θ. The solid line represents the true input value for the parameter.

As observed in Figure 4, ρ is always recovered which is consistent with the findings in Figure 3,
and β is recovered for higher values of θ. However, R0, and more specifically, γ is not recovered,
with γ consistently halved. The estimate γ̂ = 1

2γ implies that the estimated infectious period
will be twice the actual infectious period, even when beta is estimated to be the true value. This
indicates that unlike the results in Figure 3, in an age structured setting, γ and β are unable to
balance each other to preserve the true R0 value. This also indicates that a simple SIR cannot
be used to fit age partitioned data, even in the regime of quite low levels of heterogeneity in a
population.
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Additionally, these results show that even in the “test” case θ = 0 where the age structured
model should be equivalent to a partitioned well mixed model, biases still form and skew R0 es-
timates. Additionally these biases propagate throughout the model for each value of θ resulting
in R0 two to almost four times higher than the input values. These results are consistent with
the findings by (He et al. 2010; Hooker et al. 2011; O. Bjornstad 2002).

A typical convergence plot can be seen in Figure 5. These plots indicate that the values of
actually converging and that likelihood is consistently maximized.

Figure 5: Iterated filtering convergence plots for θ = 1, these are typical of each θ value.

Additionally, in the age structure model formulation, we have tried
∑ Ij

Nj
and 1

N

∑
Ij and ob-
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serve the same biases in γ and R0. Additionally, as seen in Figure 5, γ and ρ converge quickly,
and while b0 does not converge at the same speed, the final values are quite clustered. When the
estimated parameters are plugged back into the well mixed model, we see similar behavior in
the final 10 years of simulated data, as seen in Figure 6. Note that the relative error is generally
small, however there is a large relative error spike that year 70, seemingly before the data syncs
up to the true values.

Figure 6: Simulated data (blue) and fitted data (red) for θ = 0 as well as the relative error
between the two plots.

These results indicate that not only does age heterogeneity result in high estimates of R0 and
the infectious period 1

γ , but that the biases can form even in zero or low heterogeneous conditions.
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4 Discussion

4.1 Conclusions

Currently, the World Health Organization (WHO) have stated two target goals – 1) reducing
global measles mortality by 95% compared to 2000 estimates by 2015, and 2) eliminate measles
in at least five WHO regions by 2020 (World Health Organization 2012).

We find that under-reporting alone is not responsible for the double or triple R0 estimates seen
in (He et al. 2010), but can be responsible for variations. However this is not surprising, as in
theory reporting rate ρ is essentially a stochastic scaling factor.

However, in the age structure model we do find biases. While it is reasonable to assume that
higher R0 values could form for high levels of heterogeneity, it is not obvious that biases should
for essentially a partitioned well mixed model. Possible reasons could be attributed to different
sized compartments and thus the ageing rates.

These results overall show that while under-reporting does not effect parameter estimates in the
simulated data, age structure has dramatic effects on γ, R0, and in certain mixing regimes, β.

4.2 Limitations

On the technical side, particle filtering has many strengths, there are also some disadvantages –
both expected and unexpected. It is a known fact that the codes are computationally expensive
and each data set parameter estimation can take hours. Additionally, in the discrete time SIR
model, our steady states are dependent on step size ∆t, for example at steady state we have
I∗ = µ∆t

1−e(µ+γ)∆t−µ
β

. This puts an explicit limit on the required step size ∆t.

4.3 Next Steps

Previous studies have suggested using a parameter α and a non-linear incidence function,
λ = β( IN )α, to look at the level of inhomogeneity. However in an analysis of twenty data
sets, this parameter was estimated to be α = 1 He et al. (2010). Our results indicate that in a
basic well-mixed SIR model, more work should be done to capture age heterogeneities.

Previous work has considered their transmission parameter β to be a function of the school term
and the holiday reflecting increased transmission for children in school (He et al. 2010; Schenzle
1984). This formulation could be included in future age structure models.
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Additionally our uniform treatment of age classes is not the most realistic approach. We as-
sume that there are an equal number of people in each age group whereas finding the ini-
tial distribution using the McKendrick PDE in steady state, nt + na = −µn and therefore
N(a, a+ ∆a) = BN

µ e−µa(1− e−µ∆a), where N is the number of individuals per age group, may
be more realistic (Hethcote 2000). We also assume that every age class dies at the same rate,
whereas probability of dying may not be evenly distributed (McLean and Anderson 1988). In
the same way, we assume that birth is a function of the entire population, whereas birth is really
a function of a select number of age groups. However, as we are primarily investigating bias
formation, these changes are not essential to our findings.

Finally, another potential bias is the spatial nature of epidemics, which should be also be inves-
tigated.
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