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Abstract

We investigate the famous Hadwiger Conjecture, focusing on un-
conditional convex bodies. We establish some facts about covering
with homotethic copies for Lp balls, and prove a property of outer
normals to unconditional bodies. We also use a projection method to
prove a relation between the bounded and unbounded versions of the
conjecture.

1 Definitions and Background

Definition 1. A convex body (closed and compact) in Rn is called uncondi-
tional if it is symmetric with respect to the coordinate hyperplanes.

Definition 2. For convex bodies K and T , let N(K,T ) be the minimum
number of translates of T needed to cover K.

Conjecture 1 (Hadwiger). For K a convex body in Rn, N(K, int(K)) ≤ 2n.

2 Lp balls

2.1 2n translates

For Bn
p the unit ball in the Lp norm, we first show that N(Bn

p , (1 −
1
n
)
1
pBn

p ) ≤ 2n, i.e. we can achieve a homothety ratio of (1 − 1
n
)
1
p with

just 2n translates. We start by determining the covering number i(Bn
1 ) =

1



N(Bn
1 , int(B

n
1 )) of the cross-polytope, Bn

1 . First, it is impossible to cover
it with less than 2n translates. If this was possible, we’d have two vertices
(points of the form (0, . . . ,±1, . . . , 0) ), say v1 and v2 satisfying

‖v1 − y‖1 < 1, ‖v2 − y‖1 < 1

for some y ∈ Rn. But we have

‖v1 − y‖+ ‖v2 − y‖ ≥ ‖(v1 − y) + (y − v2)‖ = ‖v1 − v2‖ = 2,

so we need at least 2n translates. Let’s suppose that translates of the form
±λei work, where ei are the standard basis vectors and λ ∈ (0, 1]. We need
that ∀x ∈ ∂Bn

1 ∃ 1 ≤ i ≤ n s.t. ‖x − λei‖ < 1. Since ‖x‖ = 1 ∃ i s.t.
|xi| ≥ 1

n
. Let λ = 1

n
, then the translate ± 1

n
ei works, where the sign depends

on that of xi. Then

‖x− 1

n
ei‖ = |xi −

1

n
|+ 1− |xi| = 1− 1

n
< 1 if xi > 0

and

‖x+
1

n
ei‖ = −xi −

1

n
+ 1 + xi = 1− 1

n
< 1 if xi < 0

Thus, i(Bn
1 ) = 2n, and, in particular, the homothety ratio 1 − 1

n
still works

with 2n translates. For general p we may do a similar procedure. Assume
translates of the form ±λei work. We need that ∀x ∈ ∂Bn

p ∃ 1 ≤ i ≤ n s.t.

‖x − λei‖p < 1. Since ‖x‖p = 1, ∃ i s.t. |x| ≥ n−
1
p , so let us set λ = n−

1
p .

Assuming wlog that xi > 0, i.e. xi ∈ [n−
1
p , 1], we have

‖x− n−
1
p‖pp = |xi − n−

1
p |p + 1− |xi|p = (xi − n−

1
p )p + 1− xpi .

Differentiating the above expression with respect to xi we get

p(xi − n−
1
p )p−1 − pxp−1i .

But xi > xi − n−
1
p , so the norm is strictly decreasing on [n−

1
p , 1]. Thus,

‖x− n−
1
p‖pp ≤ 1− n−p

1
p = 1− 1

n
< 1

In particular, the homothety ratio (1 − 1
n
)
1
p works with 2n translates, so

N(Bn
p , (1− 1

n
)
1
pBn

p ) ≤ 2n.
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2.2 2n translates

The above approach uses translates that work for one extreme of the Lp

balls (p = 1). We can also use the translates that work for the other extreme:
L∞, i.e. the cube. We know that translates in the directions of the diagonals
give the covering number 2n. Since the Lp balls are unconditional bodies,
we may focus on just one quadrant, so let’s assume wlog that all coordinates
are non-negative. Assume a translate of the form ε = (ε, . . . , ε) covers the
entire first quadrant of Bn

p , for some ε > 0. To find the best possible epsilon
(corresponding to the smallest possible homothety ratio), we must find the
following:

max
x:xi≥0 ∀i

f(x) subject to g(x)=0 , where

f(x) = ‖(x1, . . . , xn)− ε‖pp and

g(x) = ‖(x1, . . . , xn)‖pp − 1.

We solve this problem with the method of Lagrange multipliers, first con-
sidering the boundary of Bn

p itself (xi > 0 ∀i), and then considering the
boundary of the quadrant separately.

∇f = µ∇g for some constant µ

(p(x1 − ε)p−1, . . . , p(xn − ε)p−1) = µ(pxp−11 , . . . , pxp−1n ),

where we have assumed that xi ≥ ε ∀i (the final result is the same for the case
0 < xi < ε).We get that (xi−ε)p−1 = µxp−1i , or xi = ε

1−µ
1

p−1
(assuming p > 1).

We have that ‖x‖pp = 1⇒ n( ε

1−µ
1

p−1
)p = 1⇒ µ = (1− εn

1
p )p−1 ⇒ xi = n−

1
p .

Then the corresponding distance (homothety ratio) is

‖(n−
1
p , . . . , n−

1
p )− ε‖p = n

1
p (n−

1
p − ε) = 1− εn

1
p

Now we examine the boundary of the quadrant. Suppose xi = 0 for some
i. Then f(x1, . . . , xi−1, 0, xi+1, . . . , xn) = εp +

∑
j 6=i

(xj − ε)p. We must now

maximize the sum
∑
j 6=i

(xj − ε)p where
∑

j neqi

(xj)
p = 1, but this is just the

above Lagrange multiplier problem in n−1 dimensions, so the corresponding

critical value is f((n−1)−
1

p−1 , . . . , 0, . . . , (n−1)−
1

p−1 ) = εp + (1− ε(n−1)
1
p )p.

Notice that n− 1 < n⇒ ε(n− 1)
1
p < εn

1
p ⇒ (1− ε(n− 1)

1
p )p > (1− εn

1
p )p ⇒

‖((n− 1)−
1

p−1 , . . . , 0, . . . , (n− 1)−
1

p−1 )− ε)‖p > ‖(n−
1
p , . . . , n−

1
p )− ε‖p.
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Since the right hand side corresponds to the only critical value given to us by
the original Lagrange problem, we know that the absolute maximum must
occur one of the coordinate hyperplanes. We may continue to inductively
assume that a greater distance occurs at a point where some (new) xj = 0,
eventually getting that the absolute maximum must occur at one of the
basis vectors ei. Let’s assume wlog that it occurs at e1. Then the absolute
maximum of f in the first quadrant is

f(1, 0, . . . , 0) = (n− 1)εp + (1− ε)p

We need the right hand side to satisfy (n− 1)εp + (1− ε)p < 1. Notice that
for p ≥ 2, (n− 1)εp + (1− ε)p ≤ (n− 1)ε2 + (1− ε)2 = nε2 − 2ε+ 1. Trying
ε = 1

n
(as a guess), we get that

‖(x1, . . . , xn)− ε‖p ≤ (1− 1

n
)
1
p .

In particular, the homothety ratio (1− 1
n
)
1
p works with 2n translates for p ≥ 2,

so N(Bn
p , (1 − 1

n
)
1
pBn

p ) ≤ 2n. With the above (non-optimal) guess, we have
gotten the same homothety ratio, but with more translates.

2.3 Upper-Semi Continuity of N(K,λK)

We have the following, due to [1]:

Theorem 1. Let L and K be convex bodies such that dBM(L,K) < 1 + ε
λ

and N(K,λK) = A. Then N(L, (λ+ ε)L) ≤ A.

We may use this theorem to find a homothety ratio for large p. For

p ≤ q, we have that n
1
q
− 1

p‖ · ‖p ≤ ‖ · ‖q ≤ ‖ · ‖p, i.e. d(Bn
p , B

n
q ) ≤ n

1
p
− 1

q . Thus

d(Bn
p , B

n
∞) ≤ n

1
p . We also have that N(Bn

∞,
1
2
Bn
∞) = 2n (this is the best

possible homothety ratio for 2n translates). Then, if we want N(Bn
p , λB

n
p ) ≤

2n, it suffices to have n
1
p < 1 + 2(λ − 1

2
) = 2λ, i.e. p > logn

log 2λ
. For example,

we may try to reproduce the above results by taking λ = (1 − 1
n
)
1
p . Then

p > logn

log 2+ 1
p
log(1− 1

n
)
⇒ p >

log n2

n−1

log 2
. Figure 1 shows how this expression grows

with n.
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Figure 1: For a fixed n, it is enough to choose any p greater than the value of
the above graph at n to guarantee that 2n translates work for a homothety

ratio of (1− 1
n
)
1
p

3 Outer Normals

Suppose K is an unconditional body. For x ∈ ∂K, v an outer normal
at x means (v, y) ≤ (v, x) ∀ y ∈ K. If K is strictly convex, then (v, y −
x) < 0 for y 6= x in K. By unconditionality, for 1 ≤ i ≤ n, the point
xi = (x1, x2, . . . , xi−1,−xi, xi+1, . . . , xn) ∈ K. (v, xi − x) = (v,−2xiei) =
−2xivi < 0 ⇒ xivi > 0 for xi 6= 0 ⇒ xi 6= 0 → vi 6= 0 ⇒ vi = 0 → xi = 0.
Now, suppose K is smooth, so there is only one outer normal v at each
x ∈ ∂K. We claim that then xi = 0→ vi = 0. Suppose not, so ∃ x, v, i such
that xi = 0 but vi 6= 0. ∀y ∈ K, (v, y) ≤ (v, x) = (Proje⊥i (v), x) since xi = 0.
But (Proje⊥i (v), y) = (v,Proje⊥i (y)) ≤ (v, x). Therefore, Proje⊥i (v) is also an
outer normal to K at x, which contradicts K being smooth. Thus, we have
proved the following:

Theorem 2. For K unconditional, smooth, and strictly convex, for x ∈ ∂K
and v the outer normal to K at x, xi = 0↔ vi = 0.
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4 Projections

4.1 Bounded Bodies

Given a (bounded) convex body K, we may assume that 0 ∈ K (doesn’t
change covering number). Let π : Rn → Rn−1 be the orthogonal projection of
Rn onto Rn−1 (where we think of Rn as the orthogonal direct sum R1⊕Rn−1

and project parallel to R1). We hope to achieve that if N translates of
int(π(K)) are enough to cover π(K), then at most 2 translates of int(K) per
translate of π(K) are needed to cover K, i.e. the covering number of K is
at most 2N . Continuing this argument inductively (we may keep projecting
down to the dimension below), we eventually reach R1. This final projection
must be a bounded segment, which has a covering number of 2, so we get that
N(K, int(K)) ≤ 2n. Specifically, we conjecture that if y ∈ ∂π(K) satisfies
y ∈ x + int(π(K)) for some translate x ∈ Rn−1, then ∀z s.t. π(z) = y,
z ∈ x± εe1 + int(K) for some ε > 0, where e1 = (1, 0, . . . , 0)

Conjecture 2. The above conjecture works for unconditional bodies.

Theorem 3 (Originally formulated by Boltyanski and Soltan, see [2]). Sup-
pose K ∈ Rn is closed and bounded. Suppose there are no lines parallel to
R1 intersecting K at only one point (perhaps we can achieve this by rotating
K). Then:

i(K) ≤ 2i(π(K))

Proof. See Appendix; slight modification of the proof found in [2].

4.2 Equivalence of Bounded and Unbounded Conjec-
tures

Suppose K ∈ Rn is a closed convex body. Let c(K) = N(K, int(K)),

h(K) = min
N∈N
{n : K ∈

N⋃
i=0

(xi + λiK) where xi ∈ Rn, λi ∈ (0, 1) ∀i}. Clearly,

c(K) ≤ h(K), and by compactness they are equal in the case that K is
bounded. We attempt to establish the equivalence of the following two con-
jectures:

Conjecture 3 (Hadwiger). For K bounded, c(K) = h(K) ≤ 2n.

6



Conjecture 4. For K unbounded, if c(K) is finite, then c(K) ≤ h(K) ≤
2n−1.

Proposition 1. Conjecture 4 → Conjecture 3.

Proof. Suppose K ∈ Rn is bounded. Consider the (unbounded) cylinder
K̃ := K × [0,∞] ∈ Rn+1. First, we claim that h(K̃) ≤ h(K), in particular

that h(K̃) is finite. For suppose that K ∈
n⋃
i=0

(xi + λiK), then clearly K̃ ∈
n⋃
i=0

(xi − εen+1 + λiK̃) ∀ ε > 0, where en+1 is the (n + 1)st standard basis

vector. This is because ∂K̃ projects exactly down to ∂K, except for the
bottom face of the cylinder. Thus, if x ∈ ∂K satisfies x ∈ xi + λiK, then
∀ k > 0, x + ken ∈ xi + λiK̃. To cover the bottom face it suffices to shift
all of our translates down any amount. Now, by our assumption h(K̃) ≤

2(n+1)−1 = 2n. Thus, for some x̃i and λi, K̃ ∈
2n⋃
i=0

(x̃i + λiK̃). Each x̃i is of

the form x̃i = xi ± εien+1 for xi ∈ Rn. Any point x ∈ ∂K is also in ∂K̃,
with last coordinate 0. Clearly, if x ∈ x̃i + λiK̃, then x ∈ xi + λiK. Thus,

K ∈
2n⋃
i=0

(xi + λiK), so h(K) ≤ 2n.

We conjecture that the reverse of the above proposition holds as well.
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A Proof of Theorem 3

Proof. Let p1, . . . , pm be directions in Rn−1 illuminating π(K). Let e1 be the
standard basis in R1. We claim that for big enough λ > 0, the directions

p1 + λe1, . . . , pm + λe1, p1 − λe1, . . . , pm − λe1

illuminate K.
By our assumption, for a ∈ K the line la ‖ R1 intersects K along a

segment, call it I(a). Let u(a) be the “top” of this segment, and v(a) the
“bottom” (where x is “above” y if x − y = ke1 for k > 0). Let U = {u(a) :
a ∈ K}, V = {v(a) : a ∈ K}. For a ∈ ∂K \ (U ∪ V ), if a direction p ∈ Rn

illuminates u(a), then it illuminates I(a) \ {v(a)}. Indeed, the illuminating
condition guarantees that xa = u(a) + λp ∈ int(K) for some λ > 0. Thus
by convexity the segment sa between xa and v(a) is in K, with every point
except v(a) an interior point. For b ∈ I(a) \ {v(a)}, the half-line b + R+p
must intersect sa at some point in int(K). Thus, p illuminates b:

u(a)

b

v(a)

b+ R+p

xa
sa

Similarly, if a direction illuminates v(a), then it illuminates I(a) \ {v(a)}.
Thus, it is enough to show that 2m directions are needed to illuminate U∪V .

We first illuminate the set U0 ∪ V 0, where U0 := U ∩ π−1(∂(π(K)) and
V 0 := V ∩ π−1(∂(π(K)). The directions p1, . . . , pm illuminate π(K). By
compactness, we can find closed sets F1, . . . , Fm such that F1 ∪ · · · ∪ Fm =
∂π(K) and direction pi illuminates Fi. For any x ∈ Fi, we may again define
u(x) and v(x) as the top and bottom points of I(x), respectively, where
I(x) is the intersection of lx ‖ R1 with K. Let Ui = {u(x) : x ∈ Fi},
Vi = {v(x) : x ∈ Fi}. Then U1 ∪ · · · ∪ Um ∪ V1 ∪ · · · ∪ Vm = U0 ∪ V 0. Our
goal is to illuminate all of cl(U0 ∪ V 0), and use a compactness argument to
argue that only a finite number of illumination vectors (in particular, 2m)
actually suffices.
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Let us first illuminate the points v(x), for x ∈ ∂π(K). Since x ∈ Fi is
illuminated by pi, there exists some y ∈ int(π(K)) such that y = x + λpi
for some λ > 0. By assumption, K contains the segment I(y), and y ∈
int(π(K)) means that I(y) \ {v(y), u(y)} ⊂ int(K). The quadrilateral with
vertices u(y), u(x), v(x), v(y) is in K by convexity. Wlog let’s say the longer
diagonal dy is the segment between u(y) and v(x). Since d(y) is the longer

diagonal, (u(y), e1) > (c(x), e1), where c(x) = u(x)+v(x)
2

. Thus, there exists

a point ũ(y) = u(y) − δe1 ∈ int(K), with (̃u(y), e1) > (c(x), e1), for some
δ > 0. Let d̃y be the segment connecting ũ(y) and v(x). Every point of
this segment except v(x) is an interior point of K by convexity. Since the
half line c(x) + R+pi and d̃y are co-planar, they must intersect at a point
c(x) + λxpi ∈ int(K) for some λx > 0:

u(y)

u(x)

c(x)

v(x)

ũ(y)

v(y)
c(x) + R+pi

dy
d̃y

Convexity implies that for 0 < λ ≤ λx, c(x) + λpi ∈ int(K). In particular,
for λ ≤ λx, c(x) +λpi illuminates c(x), which implies that (c(x)−v(x)) +λpi
illuminates v(x). Equivalently, the vector 1

λ
(c(x)−v(x))+pi illuminates v(x)

for λ ≥ λx. c(x)−v(x) = µe1 for some µ > 0, so we have shown that for some
kx > 0, pi + ke1 illuminates v(x) for k ≥ kx. We can similarly illuminate all
points u(x), obtaining that vectors of the form pi − je1 illuminate u(x) for
j ≥ jx > 0.

Let us now illuminate points w ∈ cl(U0 ∪ V0) \ (U0 ∪ V0). By definition,
these points must be accumulation points of U0 ∪ V0. We first claim that
such points w must project to the boundary of π(K), that is, for w an
accumulation point, π(w) ∈ ∂(π(K)). Suppose, for a contradiction, that
π(w) ∈ int(π(K)), so there exists an open ball Bε(π(w))) ⊂ int(π(K), for
some ε > 0. By continuity of the projection function π, π−1(Bε(π(w)) is an
open neighborhood of w. Moreover, this neighborhood cannot contain points
in U0 ∪ V0, else Bε(π(w)) would contain a point in ∂(π(K)). But this means
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that w is an isolated point of cl(U0 ∪ V0), contradicting our assumption.
Thus, these accumulation points w can be one of two types. First, w may

be equal to a point u(x) or v(x), for some x ∈ ∂(π(K)). In this case, we have
already illuminated by the method above. Otherwise, w ∈ I(x)\{u(x), v(x)}
for some x ∈ ∂(π(K)). But, by our first argument, the vectors illuminating
u(x) and v(x) will then both illuminate w.

We have shown that for every point w ∈ cl(U0 ∪ V0), vectors of the form
pi ± ke1 illuminate w, for k ≥ kw, and 1 ≤ i ≤ m. Since illuminating
directions illuminate an open subset of ∂K, for each such w there exists a
neighborhood Ãw ⊂ ∂K such that (wlog) a vector of the form pi + kwe1
illuminates all of Ãw. Now consider a point a ∈ Ãw. If a = v(x) for some x ∈
∂(K), we know that we may increase kw without bound and stil illuminate a,
i.e. pi +ke1 illuminates a for k ≥ kw. Else, a is in the interior of the segment
I(a). By the illuminating condition there exists a point xa ∈ intK such that
xa = a + λ(pi + kwe1), for some λ > 0. But then the segment between xa
and u(a) is fully contained in K, with every point except (possibly) u(a)
an interior point. Thus, any vector of the form pi + ke1 for kw ≤ k < ∞
illuminates a (and all of Ãw):

a

u(a)

v(a)

xa

pi + kwe1

Thus, we know that for all w ∈ cl(U0 ∪ V0) there exists a neighborhood
Ãw ∈ ∂K covered by vectors of the form pi ± ke1 for k ≥ kw. The sets
Aw = Ãw∪cl(U0∪V0) are open in cl(U0∪V0), and thus form an open cover. By
compactness there exits a finite subcover Aw1 , . . . , AwN

. Let k̂ = max
1≤j≤N

{kwj
}.

Then the 2m vectors

p1 + k̂e1, . . . , pm + k̂e1, p1 − k̂e1, . . . , pm − k̂e1

illuminate U0 ∪ V0.
It remains to illuminate U1 ∪ V1 = U ∪ V \ cl(U0 ∪ V0), that is, points

w ∈ (U ∪ V ) such that π(w) ∈ int(π(K)). We shall illuminate cl(U1 ∪ V1)
and once again use a compactness argument. Consider a point w ∈ cl(V1). If
w ∈ cl(V0), we have already illuminated w. Else, π(w) ∈ int(π(K)). There
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is a vertical segment I(w) ∈ K, with I(w) \ {u(w), v(w)} ⊂ int(K), so the
vector +e1 illuminates w. Moreover, e1 illuminates an open neighborhood
Aw ⊂ ∂K around w, where Aw may be chosen small enough so that π(Aw) ⊂
int(π(K)). ∂K has affine dimension n − 1, so open sets in ∂K must also
be of dimension n − 1. Choose any vector pi illuminating π(K). We claim
that the plane P i

w containing w and parallel to span{pi, ei} must contain
another point w′ ∈ Aw, where w′ can be written as w′ = w + api ± bei,
for a, b > 0. If n = 2, this is obvious, as then any plane P i

w is all of R2.
For n ≥ 3, Aw and π(Aw) must both be of dimension at least 2, so any
“vertical” plane P = span{e1, v} for v ∈ Rn−1 intersects Aw in a segment.

The point c(w) = u(w)+v(w)
2

∈ int(K), so the segment sw connecting w′ to
c(w) has all points except w in int(K). But then for some kw > 0, the half
line w + R+(pi + kwe1) intersects int(sw), so for k ≥ kw, the vector pi + ke1
illuminates w:

w = v(w)

c(w)

u(w)w′

v(w′)

u(w′)

w + R+(pi + kwe1)

sw

e1

pi

We have now shown that for each w ∈ V1 (similar argument for w ∈ U \U0),
that vectors of the form pi ± ke1 illuminate w, for k ≥ kw. By another
compactness argument, we find that there exists a constant k̄ > 0 such that

p1 + k̄e1, . . . , pm + k̄e1, p1 − k̄e1, . . . , pm − k̄e1

illuminate cl(U1 ∪ V1). Finally, take λ = max{k̂, k̄}, and then the vectors

p1 + λe1, . . . , pm + λe1, p1 − λe1, . . . , pm − λe1

illuminate ∂K, so the theorem is proved.
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