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Abstract. The gauged linear sigma model (GLSM) originated in
physics but it has recently made it into mathematics as an enu-
merative theory of critical loci. We will study the geometry of the
input data of the GLSM, here referred to as GLSM space. We will
show that GLSM spaces with a Riemann surface define a toric va-
riety, which allows us to classify all GLSM spaces with a Riemann
surface. We will also investigate other examples of GLSM spaces,
some of which involve vector bundles.

1. Introduction

The gauged linear sigma model (GLSM) was introduced into physics
by Witten in [5] as a special type of a quantum field theory. One
of the applications of the GLSM is the Landau-Ginzburg/Calabi-Yau
correspondence in physics. By varying the parameters of the GLSM,
Witten argued that the GLSM converges to a nonlinear sigma model
at a certain limit of the parameters and a Landau-Ginzburg orbifold
at a different limit. In mathematics, the GLSM can be viewed as an
enumerative theory of critical loci (see [2] for the mathematical theory
of the GLSM). In this paper we will study the geometry of the input
data of the GLSM, here referred to as GLSM space.

One of the ingredients of a GLSM space is a complex manifold under
a holomorphic action of the multiplicative group C∗, although for usual
enumerative geometry, GLSM spaces would include a smooth algebraic
variety instead. In Section 2, we will classify all GLSM spaces where
the complex manifold is a Riemann surface. To do this, we will study
the orbits of the C∗-action and the number of fixed points under such
action, leading to the observation that non-trivial GLSM spaces with a
Riemann surface must be toric varieties. In Section 3, we will begin by
giving a criterion to create new GLSM spaces from existing ones. We
will then explore other examples of GLSM spaces where X is a complex
manifold of dimension greater than one. These examples involve vector
bundles, so some background in vector bundles is provided. We will
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also introduce the concepts of degeneracy locus of a GLSM space and
of isomorphisms between GLSM spaces, and we will end with an open
question about whether two types of GLSM spaces are isomorphic.

Throughout this paper, dimension will always mean complex dimen-
sion.

Definition 1. Let X be a complex manifold. A holomorphic C∗-action
on X is a holomorphic function µ : C∗ ×X → X satisfying the group
action axioms, that is

µ(1, x) = x and µ(λ1λ2, x) = µ(λ1, µ(λ2, x))

for all x ∈ X and λ1, λ2 ∈ C∗.
In other words, the action µ is a holomorphic group action of the Lie

group C∗, the multiplicative group of complex numbers, on a complex
manifold X.

Example 1 (Identity C∗-action). Let X be a complex manifold. The
holomorphic C∗-action given by µ(λ, x) = x for all λ ∈ C∗ and x ∈ X
will be called the identity C∗-action. Under this action, all points of X
are fixed points.

Example 2 (Natural C∗-action). An example of a holomorphic C∗-
action on C is given by µ(λ, x) = λx for all λ ∈ C∗ and x ∈ C. This
will be called the natural C∗-action on C.

Example 3. Another example of a holomorphic C∗-action on C is
given by µ(λ, x) = x

λ
for all λ ∈ C∗ and x ∈ C.

Definition 2. A GLSM space1 (X,W, µ) of weight k is a complex
manifold X together with a holomorphic function (also called superpo-
tential) W : X → C, and a holomorphic C∗-action

µ : C∗ ×X → X

(λ, x) 7→ λ.x

such that W has C∗-weight one, that is

W (µ(λ, x)) = λW (x)

for all λ ∈ C∗ and x ∈ X.

Definition 3. A GLSM space of weight k is a GLSM space (X,W, µ)
except that W has C∗-weight k, that is

W (µ(λ, x)) = λkW (x)

for all λ ∈ C∗ and x ∈ X.

1called input data of the GLSM in [2]
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In this paper, a GLSM space will mean a GLSM space of weight one,
unless specified.

Definition 4. An algebraic GLSM space is a GLSM space (X,W, µ)
such that X is a smooth algebraic variety, W is algebraic, and µ is an
algebraic C∗-action.

Remark 1. We can also generalize the definition of GLSM spaces to
allow X to be an orbifold.

Remark 2. In most of the literature, the variety X takes the form
of a GIT quotient V//G of a vector space V by an algebraic group
G. For example, X can be a proper (compact) toric variety. In [2,
Section 3.2.2], the input data for the GLSM is formulated in terms of
a vector space V , both a G- and a C∗-action on V , and a G-invariant
holomorphic function W : V → C, satisfying several conditions. By
G-invariance, W descends to a holomorphic function on the quotient
V//G. By one of the conditions, the C∗-action on V can be used to
define a C∗-action on V//G.

Example 4 (Trivial GLSM space). For any complex manifold X and
any action µ, we may form the trivial GLSM space (X, 0, µ), where the
superpotential is identically zero.

Example 5. We may also form a GLSM space of weight one where
X = C, the C∗-action is the natural action, and the superpotential is
the function defined by a degree one homogeneous polynomial over C.
That is,

µ(λ, x) = λx and W (x) = ax for some a ∈ C.

Example 6. Let f : C2 → C be a holomorphic function. Define the
superpotential and the C∗-action by

W : C2 × C→ C µ : C∗ × (C2 × C)→ C2 × C
(~x, p) 7→ pf(~x) (λ, (~x, p)) 7→ (~x, λp).

Then (C2 × C,W, µ) is another example of a GLSM space of weight
one.

2. GLSM spaces with a Riemann surface

In this section we will classify all GLSM spaces (X,W, µ) such that
X is a one-dimensional complex manifold, that is, X is a Riemann
surface.
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Lemma 1. Let µ be a non-trivial holomorphic C∗-action on a Riemann
surface X. Then the orbits of non-fixed points are isomorphic to C∗ as
complex manifolds.

Proof. Let x ∈ X be a point which is not fixed under µ. We will use
Stabµ(x) and Orbµ(x) to denote the stabilizer group and the orbit of x
under µ, respectively. The only possible stabilizer subgroups of x are
C∗ or the nth roots of unity, denoted by ωn. If Stabµ(x) = C∗, then x
would be a fixed point, so it must be the case that Stabµ(x) = ωn for
some n ∈ N. Define a new C∗-action µ̃ on X by µ̃ := µ(λn, x). This
new action µ̃ is holomorphic.

Next, we show that Orbµ(x) = Orbµ̃(x). Let a ∈ Orbµ(x), so a =

µ(λa, x) for some λa ∈ C∗. By letting λα = λ
1/n
a , where λ

1/n
a an nth

rooth of λa, we see that a = µ̃(λa, x) and a ∈ Orbµ̃(x). Now let
b ∈ Orbµ̃(x), so b = µ̃(λb, x) for some λb ∈ C∗. By letting λβ = λnb we
see that b = µ(λβ, x) and b ∈ Orbµ(x).

We also have that Stabµ̃(x) = ωnn = {1}, that is, the stabilizer of x
under µ is trivial. We can define a function

φ : Orbµ̃(x)→ C∗

λ.x 7→ λ,

which is a biholomorphism, i.e. a holomorphic bijective function whose
inverse φ−1 is also holomorphic; biholomorphisms are isomorphisms in
the category of complex manifolds. Since Orbµ(x) = Orbµ̃(x), it follows
that Orbµ(x) is isomorphic to C∗ as a complex manifold. �

Definition 5. A toric variety is an algebraic variety X that contains
an algebraic torus T as a dense open subset, together with an action
of T on X that extends the natural action of T on itself.

Theorem 1 (Open mapping theorem). Let X and Y be connected
Riemann surfaces and let f : X → Y be a non-constant holomorphic
mapping. Then f is open.

Proof. See [3, Corollary 2.4]. �

Theorem 2. Let µ be a non-trivial holomorphic C∗-action on a con-
nected Riemann surface X. Then X is a toric variety.

Proof. Let x ∈ X be a non-fixed point under µ. By Lemma 1, Orbµ(x)
is isomorphic to C∗ as a complex manifold, so X contains an algebraic
torus. Define U := Orbµ(x) and consider the restriction of µ to x,
written as µx : C∗ → X. By the open mapping theorem, we get that
U is open. We now prove that U is dense in X, i.e. U = U .
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First, we show that U \ U consists of fixed points. Assume that
v ∈ U \ U is not a fixed point, i.e. v = λ.y for some λ ∈ C∗ and
some non-fixed point y ∈ X. Denote by U ′ the orbit of y. By the
open mapping theorem, U ′ is open. Note that given any two orbits of
non-fixed points, then either the orbits are disjoint or they are equal; if
the orbits intersect, then they must be equal. Then U ∩U ′ = ∅, which
contradicts the fact that v is a limit point of U , so v must be a fixed
point.

We now show that U is open in X, which implies that U is dense in
X; otherwise, it would contradict the connectedness of X because U
would be both open and closed in X. To show that U is open, we will
find a neighborhood contained in U for every point in U . If u ∈ U , then
U is a neighborhood of u. If v ∈ U \ U , then let V be a neighborhood
of v homeomorphic to the open unit disk D in C, such that v 7→ 0
under this homeomorphism (the existence of V is guaranteed because
X is a complex manifold). Define W := µ−1x (V ). We now extend µx
holomorphically to some p ∈ W by setting µx(p) = v. It is possible to
holomorphically extend µx in this way because holomorphic functions
“blow up” near singularities; if µx had a pole or an essential singularity
at p, then the restriction of µx to W would be unbounded, contradicting
the fact that V is homeomorphic to the open unit disk. Note also that
it must be the case that p ∈ {0,∞} because otherwise we would have
that W ⊂ C∗ and µx(p) = ∅. By the open mapping theorem, the
restriction of µx to W , written as µx|W : W → V , is an open map.
Since V ⊂ U and V is open, we can conclude that every point in U has
a neighborhood contained in U . Therefore, U = X, i.e. U is dense in
X, and X is a toric variety. �

Corollary 1. Since the only one-dimensional toric varieties are C∗,
C, and CP1, all non-trivial GLSM spaces with a Riemann surface will
occur in these three varieties.

Theorem 3. Any holomorphic function from a compact Riemann sur-
face to C is constant.

Proof. See [3, Corollary 2.8]. �

Corollary 2. Let (CP1,W, µ) be a GLSM space. Since CP1 is a com-
pact Riemann surface, the superpotential W will be constant. In ad-
dition, since any GLSM space must satisfy that W (µ(λ, x)) = λW (x)
for all λ ∈ C∗ and x ∈ X, it follows that the superpotential must be
identically zero. Therefore, all GLSM spaces with CP1 will be trivial.

Theorem 4 ([1]). Suppose a multiplicative group G acts on a complex
algebraic variety X, and let XG denote the set of fixed points of X
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under the action of G. We then have the following equality between
Euler characteristics: χ(X) = χ(XG).

Lemma 2. Any non-trivial holomorphic C∗-action on C∗, C, and CP1

will have exactly 0, 1, and 2 fixed points, respectively.

Proof. We know that the Euler characteristics of C∗, C, and CP1 are
0, 1, and 2, respectively. By Theorem 4 we obtain that

χ(C∗C
∗
) = 0, χ(CC∗

) = 1, and χ(CP1C∗
) = 2.

In the proof of Theorem 2 we showed that the preimage of any fixed
point under the holomorphic extension of µx can only be 0 or∞. Hence,
the number of fixed points in a Riemann surface under a non-trivial
holomorphic C∗-action must be at most 2. We also know that the Euler
characteristic of a singleton set is 1, and that the Euler characteristic
of a two-point set is 2 (note also that the Euler characteristic is a
homotopy invariant). It then follows that∣∣∣C∗C∗

∣∣∣ = 0,
∣∣CC∗∣∣ = 1, and

∣∣∣CP1C∗∣∣∣ = 2.

�

Theorem 5. The table below classifies all non-trivial GLSM spaces
(X,W, µ) where X is a connected Riemann surface.

C∗ C∗ C

Number of fixed points 0 0 1

µ(λ, x) = λx
x

λ
λ(x− b) + b

W (x) = ax
a

x
a(x− b)

λ, a ∈ C∗ and b ∈ C

Proof. By Corollaries 1 and 2 we know that all such non-trivial GLSM
spaces will occur on C∗ and C. By Lemma 2 we know the number of
fixed points on each of these spaces.

Let X be C∗ or C, and let µ be the natural action. We can then
produce all remaining holomorphic C∗-actions µ̃ on X by using the
following commutative diagram:

C∗ ×X X

C∗ ×X X

µ

(1, ϕ) ϕ

µ̃
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where ϕ denotes an automorphism of X and 1 is the identity.
Let X = C. The automorphisms of C are of the form ϕ(x) = ax+ b,

where a, b ∈ C and a 6= 0. Thus, ϕ−1(x) = x−b
a

. Using the commutative
diagram, we obtain that for some λ ∈ C∗ and some x ∈ C,

ϕ ◦ µ ◦ (1, ϕ−1)(x) = λ(x− b) + b.

Therefore, µ̃(λ, x) = λ(x − b) + b is the general form of a non-trivial
holomorphic C∗-action on C, where b ∈ C. By using the condition that
W (µ(λ, x)) = λW (x) for all λ ∈ C∗ and x ∈ X, it follows that

W (x) = a(x− b)

is the general form of the superpotential W , where a ∈ C∗.
Let X = C∗. The automorphisms of C∗ are either x 7→ ax or x 7→ a

x
,

where a ∈ C∗. If ϕ(x) = ax for some a ∈ C∗, so ϕ−1(x) = x
a
, then the

commutative diagram tells us that

µ̃(x) = ϕ ◦ µ ◦ (1, ϕ−1)(x) = λx.

By the condition that W (µ(λ, x)) = λW (x), we obtain that

W (x) = ax,

where a ∈ C∗. If ϕ(x) = a
x

for some a ∈ C∗, so ϕ−1(x) = ϕ(x), then
we get from the commutative diagram that

µ̃(x) = ϕ ◦ µ ◦ (1, ϕ−1)(x) =
x

λ
.

And by the condition that W (µ(λ, x)) = λW (x), it follows that

W (x) =
a

x
,

where a ∈ C∗. �

Remark 3. In the table above, b would be the fixed point on C.

3. More examples of GLSM spaces

In this section we will explore examples of GLSM spaces where X
is a complex manifold of dimension greater than one. We begin the
section by showing how to form a new GLSM space from an existing
one.

Proposition 1. Let (X,W, µ) be a GLSM space of weight k, and let
Y be a submanifold of X. Then (Y,W, µ) is a GLSM space of weight
k if and only if for all z ∈ X \ Y , we have µ−1(Orbµ(z)) ⊂ X \ Y .
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Proof. Let x ∈ X be a non-fixed point under µ, so there exists another
x0 ∈ X such that x = µ(λ, x0) for some λ ∈ C∗. If we remove x from
X to form Y , i.e. x ∈ X \ Y , but x0 ∈ Y , then µ would be undefined
on Y , since µ(λ, x0) = ∅. �

In other words, to form a new GLSM space using a submanifold Y
of X, we may only remove preimages of orbits in X. In particular, we
can remove fixed points from X to form Y .

Corollary 3. Let (C,W, µ) be a non-trivial GLSM space. By Theorem
5, we have µ(λ, x) = λ(x− b) + b for some b ∈ C. Then (C\{b} ,W, µ)
is a GLSM space if and only if b = 0.

Definition 6. A holomorphic line bundle is a holomorphic vector bun-
dle of rank one, that is, a holomorphic vector bundle where the fibers
are one-dimensional complex vector spaces.

Definition 7. Let π : E → X be a holomorphic vector bundle of rank
r, where X is a complex manifold. Let E∨ denote the dual of E. We
define π∨ : E∨ → X to be the dual vector bundle of E, which is a
holomorphic vector bundle of rank r such that the fibers of E∨ are the
dual vector space to the fibers of E, that is

(E∨)x = (Ex)
∨ for all x ∈ X.

Definition 8. Let p : E → Y be a holomorphic vector bundle and
let f : X → Y be a holomorphic function between complex manifolds.
The pullback bundle π : f ∗E → X is defined to be a holomorphic vector
bundle such that

f ∗E = {(x, e) ∈ X × E | f(x) = p(e)} ⊂ X × E.

We endow f ∗E with the subspace topology and let π be the projection
onto X, i.e. π(x, e) = x. In addition, any section s of E over Y induces
a pullback section f ∗s of the pullback bundle by letting

f ∗s := s ◦ f,

i.e. f ∗s(x) = (x, s(f(x))) for all x ∈ X.

Definition 9. Define

O(−1) :=
{

(p, x) ∈ CPk × Ck+1 | ∃ λ ∈ C∗ such that λp = x
}
.

Then O(−1) is a holomorphic line bundle on CPk in a natural way
(see [4, Proposition 2.2.6]), and it is known as the tautological line
bundle. Furthermore, we define O(1) to be the dual of O(−1), i.e.
O(1) := O(−1)∨; we also get that O(1) is a holomorphic vector bundle
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on CPk. Moreover, using the tensor product and the dual we can define
more holomorphic line bundles on CPk as

O(n) :=

{
O(1)⊗n for n > 0,

O(−1)⊗n for n < 0.

For any n,m ∈ Z we get that O(n)⊗O(m) = O(n+m). By letting
O(0) = O be the trivial line bundle on CPk, we obtain that, under the
tensor product operation, the set of line bundles of the form O(n) for
n ∈ Z forms an abelian group isomorphic to the group Z.

Example 7 (Example 3.2.15 in [2]). Consider a smooth quintic three-
fold given as the zero locus {F5(x) = 0} ⊂ Y := CP4 of a homogeneous
degree five polynomial F5 in five variables. We then let O(5) be the
fifth tensor power of the twisting line bundle O(1). The polynomial F5

defines a section s : Y → O(5). We then let π : X := O(−5)→ Y . Let
(x0, . . . , x5, p) denote the coordinates on X. Here, xi ∈ Γ(π∗O(1)) and
p ∈ Γ(π∗O(−5)). We then set W := p · F5(x0, . . . , x4) ∈ Γ(O(−5 +
5 · 1)) = Γ(O), which we may view as a holomorphic function on
X. We define µ by scaling p with weight one: µ(λ, (x0, . . . , x4, p)) =
(x0, . . . , x4, λp).

More generally, instead of the quintic threefold, we can consider any
hypersurface in projective space.

Example 8. Let Y be a complex manifold, E a holomorphic vector
bundle on Y , and s ∈ Γ(E) be a section of E such that the zero locus
Z = Z(s) ⊆ Y is smooth and of dimension dim(Y ) − rk(E). Then
define X := E∨, the dual vector bundle of E. Let π : X → Y be the
projection map. Then, the pullback section π∗(s) is a section of π∗E.
Furthermore, there is a tautological section p of π∗E∨. For example, we
may identify π∗E∨ with the fiber product E∨ ×Y E∨, and the section
p : E∨ → E∨ ×Y E∨ is defined via x 7→ (x, x). By pairing the sections
π∗s ∈ Γ(π∗E) and p ∈ Γ(π∗E∨) of dual vector bundles, we can define
the section W := 〈π∗s, p〉 ∈ Γ(O) (here O denotes the trivial line
bundle X ×C), which may may also regard as a holomorphic function
on X. We define µ to act on each fiber of π : X = E∨ → Y with weight
one, that is, v 7→ λ · v. Then (X,W, µ) is a GLSM space of weight one.

In particular, Examples 6 and 7 are special cases of Example 8. In
Example 6, we have that Y = C2 × C. In Example 7, we have that
Y = CP4.

Definition 10. The degeneracy locus (or critical locus) of a GLSM
space (X,W, µ) is the set of zeros of dW .
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Remark 4. An additional restriction that could be put on a GLSM
space is that the degeneracy locus should be compact.

Example 9. In Example 4, the degeneracy locus is X itself.

Example 10. In Example 6, the function f is a section of the holo-
morphic vector bundle C2 × C on C2. Assume that the zero locus
Z(f) is smooth and of dimension equal to one. For instance, let
f(x1, x2) = x21 + x22 − 1, so Z(f) is the unit circle. The degeneracy
locus is then the solution to the following system of equations:

x21 + x22 − 1 = 0,

2px1 = 0,

2px2 = 0.

The smoothness assumption on Z(f) means that ~∇f(x1, x2) 6= ~0 when-
ever f(x1, x2) = 0. Thus, the solution to the system of equations above
is Z(f) itself. Therefore, the degeneracy locus is Z(f) itself, that is,
the unit circle.

Example 11. In Example 7, the degeneracy locus is the solution to
the following system of equations:

F5(x) = 0,

∂F5

∂xi
= 0,

where i ∈ {0, 1, 2, 3, 4}. Again, the condition that the given quintic
threefold is smooth means that the zero locus Z(F5) is smooth. Hence,
the degeneracy locus will be Z(F5) itself, that is, the quintic threefold
that we started with.

Example 12. In Example 8, the degeneracy locus is the zero locus
Z ⊆ Y viewed as a subset of X via the zero section Y → X.

Definition 11. Let (X,W1, µ1) and (Y,W2, µ2) be two GLSM spaces.
We say that these two GLSM spaces are isomorphic if there exists a
biholomorphism F : X → Y such that

W1(x) = W2(F (x)) (1)

and F is a C∗-equivariant map (with respect to the actions of µ1 and
µ2), i.e.

F (µ1(λ, x)) = µ2(λ, F (x)) (2)

for all x ∈ X and λ ∈ C∗.
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Remark 5. Equation (1) is equivalent to the statement that

W1(µ1(λ, x)) = λW2(F (x)) (3)

for all x ∈ X and λ ∈ C∗. (1) implies (3) because we can substitute (1)
into W1(µ1(λ, x)) = λW1(x). (3) implies (1) by letting λ = 1 in (3).

Definition 12. Let (X,W1, µ1) and (Y,W2, µ2) be two GLSM spaces.
We say that there is a morphism between these two GLSM spaces if
there exists a holomorphism F : X → Y such that

W1(x) = W2(F (x)) (4)

and F is a C∗-equivariant map (with respect to the actions of µ1 and
µ2), i.e.

F (µ1(λ, x)) = µ2(λ, F (x)) (5)

for all x ∈ X and λ ∈ C∗.

Remark 6. An isomorphism between two GLSM spaces with complex
manifolds X and Y is a morphism of GLSM spaces in which the holo-
morphism F : X → Y is a biholomorphism.

Conjecture 1. Let (X,W, µ) be a GLSM space such that W is a
Morse–Bott function on X, in the sense that the degeneracy locus is
smooth, and that on the degeneracy locus, the Hessian of W has full
rank in the normal directions of the degeneracy locus. Assume addition-
ally that the degeneracy locus is compact. Then (X,W, µ) is isomorphic
to the GLSM space of Example 8.
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