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Abstract. Painful stimuli are processed in the dorsal horn, a region in the spinal cord where
several types of fibers send information to groups of neurons. We modify a mathematical model
of the behavior of the neuron populations in the dorsal horn circuit by adjusting parameters of
fiber and neuron behavior, and use this to simulate the body’s response to pain. In this way,
we are able to qualitatively match experimental results observed in neurological studies. Our
model incorporates Spinal Cord Stimulation (SCS), a procedure that often inhibits several types
of pain. For example, SCS has been shown to be more effective in treating neuropathic pain,
which results from damage to the nervous system, than nociceptive pain, which is more common
and results from injury to the body [1]. With our model, we have found that we are able to
capture the results of SCS, but further adjustment will be necessary to show that repeated SCS
pulses yield a net decrease in pain.

1. Introduction

The dorsal horn area of the spinal cord serves as the body’s primary pain-processing center,
receiving sensory information from all regions of the body, and transmitting signals to several
regions of the brain. Neurons located in the dorsal horn respond to information from afferent
fibers1, which react to painful and non-painful stimulus in peripheral organs like the skin (see
Figure 1). Our model describes the firing rate of neuron populations in the dorsal horn circuit.
We model the interactions between the excitatory, inhibitory and projection neuron populations,
given their respective inputs from the Aβ, Aδ and C fibers. The activity of excitatory and
inhibitory neurons is crucial for the body’s well-functioning detection of pain. When the body
detects a painful stimulus, the activity of excitatory neurons outweighs the activity of inhibitory
neurons, which alerts projection neurons into communicating the presence of pain to the brain.
The neurons receive inputs from different types of afferent fibers based on their role in pain
processing. The Aδ and C fibers are nociceptive pain-detecting fibers, which stimulate excitatory
and projection neurons. The Aβ fibers respond to innocuous stimulation, and increase inhibitory
and projection neuron activity. The primary motivation of our model is to investigate the impact
of Spinal Cord Stimulation (SCS) on pain processing. SCS is a clinical treatment for chronic
pain which uses implanted electrodes to stimulate Aβ fibers in the dorsal columns [2]. The
efficacy of this procedure remains unclear. Based on the gate-control theory of pain (1965),
the non-noxious stimulation of Aβ fibers upon SCS administration should suppress the body’s

1 In this paper, we will discuss the role of the three main groups of afferent fibers (Aβ, Aδ and C), which are
structures in the peripheral nervous system that transmit information from the bodily organs to the brain [6].



perception of painful sensation. However, there are different causes for painful sensation, and
still research on whether SCS is effective in treating neuropathic (nerve damage-related) pain, or
nociceptive (tissue damage-related) pain [1]. Our model displays the effect of SCS on ongoing,
almost-painful “pinch” stimulus. We are interested in observing the impact of SCS on neuron
population activity levels using a clear mathematical model.

Figure 1. Spinal cord input from dorsal root ganglion. Adapted from Summers [3].

2. Methods

2.1. Model Equations

The following set of equations describes the average firing rate of each population of neurons
in the dorsal horn:

dfI
dt

=
I∞(gAβIfAβ(t)) − fI

τI
, (1)

dfE
dt

=
E∞(gCEfC(t) − gIEfI) − fE

τE
, (2)

dgNMDA

dt
=
M∞(fW )maxg − gNMDA

τNMDA
, (3)

dfW
dt

=
W∞(gAβW fAβ(t) + gAδW fAδ(t) + (gCW + gNMDA)fC(t) + gEW fE − gIW fI) − fW

τW
. (4)

The I∞, E∞ and W∞ terms represent the monotonic and increasing firing rate response
functions of each neuron population. The weights, denoted gij , each have subscripts which
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Figure 2. Diagram of our model for the dorsal horn circuit. The dorsal root ganglion (DRG)
receives sensory information from periphery tissues and sends this input to the Aβ, Aδ and C
fiber populations (see Section 1). The bars directly connected from the DRG to the neuron
populations are labeled according to fiber group. Solid arrows represent excitatory connections
between fibers and neurons, while dotted arrows represent excitatory relationships between
neuron populations. Dotted bars with circular ends indicate an inhibitory relationship between
neuron populations. The Aβ fiber connections are indicated in purple, the C fiber connections in
blue, and the Aδ fiber connections in orange. The neuron populations, consisting of excitatory
(E), inhibitory (I) and projection (W) neurons, are labeled with colored circles. The excitatory
neurons increase projection neuron activity, while the inhibitory neurons dampen projection
neuron activity. The circuit terminates in the projection neurons, which send painful signals to
the brain.

describe the direction of influence (e.g. gAβW denotes the impact of a change in Aβ on W). The
intrinsic time scale is represented by τ , where τW=1ms, τE=10ms, τNMDA=1ms, and τI=20ms.
The fk(t) terms represent the functions of average firing rate of each k fiber population with
respect to time. In addition, we have an equation representing the weight gNDMA as a function
of time (Equation 3). The weight gNMDA refers to the strength of the C fiber influence on the
projection neuron firing rate through NDMA receptors2. We assume that this strength changes
according to the projection neuron firing rate, and so we express the NMDA synaptic weight
as a function of time. Within the confines of this research project, we did not experiment with
changes in this variable, and so it will not require further discussion.

2 NMDA receptors are neurotransmitter receptors located in the membrane of a neuron, which influence the
potential of information transfer [5].
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The average firing rate of the inhibitory neuron population (see Equation 1) is based upon
the firing rate response function I∞, the activity of the Aβ fibers (fAβ(t)), and the time constant
τI . Since the inhibitory neuron population receives input only from the Aβ fiber population
(see Table 1), the fAβ(t) fiber term is positive in Equation 1. Similarly, the weight gAβI=0.6
(see Table 1) indicates the positive input of the Aβ fiber population activity on the inhibitory
neuron average firing rate. We subtract the fI term so to account for the previous timestep
output (this step is consistent through all equations in this section).

The average firing rate of the excitatory neuron population (see Equation 2) takes positive
input from the C fiber population (see Table 1), as is indicated by the weight gCE multiplied by
the fC(t) average firing rate term. We subtract gIEfC(t) because the average firing rate of the
inhibitory neuron population has a negative impact on the average firing rate of the excitatory
neuron population.

The average firing rate of the projection neuron population (see Equation 4) takes posi-
tive input from the Aβ fiber population firing rate (indicated by the term gAβW fAβ(t)), the
Aδ fiber population firing rate (indicated by the term gAδW fAδ(t)), the C fiber population
firing rate which includes an NMDA receptor connection strength (indicated by the term
(gCW + gNMDA)fC(t), and the excitatory neuron population firing rate (indicated by the term
gEW fE). The projection neuron population average firing rate is decreased by the inhibitory
neuron population average firing rate. We represent this by subtracting the term gIW fI . In the
sections following, we will analyze the inputs to these model equations.

2.2. Equations for the Response Functions

The following equations describe the behavior of the neuron populations (see corresponding
output in Figure 4):

W∞(x) = maxW
1

2

(
1 + tanh

(
1

αW
(x− βW )

))
, (5)

E∞(x) = maxE
1

2

(
1 + tanh

(
1

αE
(x− βE)

))
, (6)

I∞(x) = max I
1

2

(
1 + tanh

(
1

αI
(x− βI)

))
+ 1, (7)

M∞(x) = maxM
1

2

(
1 + tanh

(
1

αM
(x− βM )

))
. (8)

We use hyperbolic tangent function to represent the firing rate response functions based on
its qualitative comparison with experimental results, as one can see in Figure 3. The shape
of the curve is determined by the parameter β, which is when the firing rate reaches half its
maximum value; this value is equal to βW , βE and βI for each population. The steepness of the
curve’s transition from non-firing to firing is given by 1

αW
, 1
αE

and 1
αI

. The terms maxW=50,
maxE=60, and max I=80 represent the maximum firing rates for the projection, excitatory
and inhibitory neuron populations respectively. Similarly, the term maxM=2.0 indicates the
maximum strength of the NMDA receptor pathway. We account for our assumption that the
baseline firing rate of inhibitory neurons, even without stimulus, is greater than 0 by adding 1
to Equation 7 [4].
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Figure 3. Previous experimen-
tal data provides evidence that
the tangent functions are well-
representative of the shape of the
response curves. Compare with
Figure 4. Adapted from Zhang
et al. J. Neurophysiol. 2014 [4].

Figure 4. Model of how the firing rate of a population
depends on the firing rate of the output from the
Aβ, Aδ, and C fibers. Previous experimental data
provides evidence that the tangent functions are well-
representative of the shape of the response curves [4].

2.3. Generating the fiber activity

The fAβ, fAδ and fC terms in the model equations denote the activity of the Aβ, Aδ and
C fiber populations with respect to time. We assume that the Aβ fiber population is 300, the
Aδ fiber population is 90, and the C fiber population is 820. We simulate 2000 milliseconds of
neuron activity, where the first 300ms are base level activity for all three fibers; we assume a
baseline firing rate of 1Hz, without stimulus or SCS, for all three fiber populations (see Figure 5).
Upon “pinch” stimulus, the Aβ and Aδ average firing rates increase to 9Hz and the C fiber firing
rate increases to 2.5Hz. We organize the activity of each of the fiber populations in matrices,
where the number of rows corresponds to the number of fibers, while the number of columns is
equal to the number of milliseconds in the simulation. If a fiber spikes at a certain millisecond,
a 1 is placed in the cell corresponding to the appropriate fiber at that time. We use a Poisson
process to generate the spike times of each fiber, then convert this output to the instantaneous
firing rate in each of the fiber groups. Increasing the firing rate in the fiber groups results in a
higher probability that each fiber will spike per millisecond; therefore, during an almost-painful
“pinch” stimulus, Aβ fibers have higher activity than during a baseline non-“pinch” state. We
create a smooth average firing rate by using a moving average over the number of spikes. We
run the simulation over 20 realizations by generating 20 random seeds for the Poisson process.
We then take the average over all realizations.

Each type of fiber responds to the “pinch” at a different time. Beginning at 300ms, the firing
rate of Aβ, Aδ and C fibers increases to indicate that they have received stimulus input from
the dorsal root ganglion (see Figure 5). Aβ fibers, because of their thick myelination and rapid
conductance, respond first at 300ms. At 320ms, the medium diameter, myelinated Aδ fibers
respond to the stimulus (see Figure 5). Finally, at 390ms the small diameter, unmyelinated C
fibers respond to the “pinch.” The heightened activity of the fibers increases the inputs to the
neuron populations, which consequently fire at a heightened rate (see Figure 5 and Figure 8).
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Figure 5. The firing rate of the fibers based on the model inputs in Table 1. We see the reaction
to the SCS pulse in the Aβ fibers between 0.8 and 0.9 seconds.

Figure 6. The firing rate of the fibers based on the model inputs in Table 1, without the SCS
implemented. Compare with Figure 5.

To introduce SCS to our model, we increase the average firing rate of the Aβ fibers for
the duration of SCS effect. In accordance with experimental results which describe the action
potential duration for Aβ fibers as about 5ms [2], we assume that the observed reaction to
SCS in the Aβ fiber population occurs within a response window of 10ms with respect to the
SCS pulse. This is the Aβ response to a single pulse of SCS, during which we expect a certain
percentage of the Aβ fibers to spike exactly once. The percentage of the Aβ fibers activated
depends on the strength of the SCS administered. Since we cannot take into account the dosage
of the SCS applied (see Section 3), we model SCS strength as a percentage of Aβ fibers which are
impacted by SCS (see Figure 9). In order to activate a certain percentage of the Aβ population
within the 10ms response window, we randomly distribute a single spike for each activated Aβ
fiber within 10ms after the start of SCS, which is 800ms in our model. To do this, we generate
a single random number, call it p, between 0 and 10 for each Aβ fiber activated, and place a 1
(a spike) at the time index 800 + p for the relevant fiber. Consequently, the average firing rate
of the Aβ fiber population increases from 9Hz to about 100Hz in response to the SCS.
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Populations Weights
gAβW 0.8
gAδW 1.8
gCW 0.5
gEW 1
gIW 1
gCE 5
gIE 0.4
gAβI 0.6

Table 1. Weights between populations.

2.4. Adjusting the Weights Between Populations

In order to choose the set of weights between populations (see Table 1), we tested small
changes of each weight until we found firing rate behavior that matched published experimental
results [2][4]. We first adapted a figure from our previous model, which has a shorter simulation
time and different firing rates for the Aβ, Aδ and C fibers. We extended the simulation to 2000ms
and changed the baseline and “pinch” firing rates for each fiber population in order to compare
with parameters from previous experiments, namely Zhang et al. [4]. According to experimental
results, the threshold of pain, or the minimum firing rate for the body to process a stimulus
as painful, is when the projection neurons fire at 25Hz [1]. We decided to adjust our model
until the baseline firing rate of projection neurons is just below painful, and would most likely
produce the sensation of a “natural pinch.” In order to do this, we needed to achieve a balance
among the weights so that the resulting projection neuron firing rate, during an almost-painful
natural “pinch” stimulus, would have an average of about 20Hz—near, but not exceeding 25Hz.
Likewise, the excitatory and inhibitory neuron populations also needed to reflect an appropriate
reaction to this stimulus. We would expect the excitatory neuron population average firing rate
to increase upon “pinch” stimulus, and in turn the inhibitory neuron population average firing
rate to increase [4].

3. Results

3.1. Model output in response to a painful stimulus

Our model successfully captures the effects of the dorsal horn circuit output during a natural
“pinch” stimulus, as well as the effects of SCS (see Figure 8 for the model output with SCS).
With our current set of weights (see Table 1), the average firing rate of projection neurons in our
model during the “pinch” is 16.72Hz (see Figure 8). We ran the simulation for 20 realizations (see
Section 2.3). Under experimental conditions, we would expect the average projection neuron
firing rate to be slightly higher during a natural “pinch”: about 20Hz. However, we faced
certain challenges in adjusting the weights (see Section 4), and this value is the result of the
most functional weights for our model. Since our average firing rate of the projection neurons
in response to “pinch” stimulus remains within proximity of the 20Hz ideal projection neuron
firing rate, we decided to push forward and investigate other abilities of the model.

3.2. Modeling the Effects of Spinal Cord Stimulation

In order to simulate the SCS, we cause a specific percentage of the Aβ fiber population to
spike exactly once in response to one pulse of the SCS (see Section 2.3). In the literature, it is
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Figure 7. Average firing rate of the neuron populations with the “natural pinch” stimulus
starting at 300ms (0.3s) and persisting until 2000ms (2.0s). Compare with Figure 8 for an
example of the model behavior with the SCS simulated.

Figure 8. Response to a single pulse of the SCS at 800ms (0.8s) in the neuron population
average firing rates, as well as the NMDA synaptic weight. This represents a high strength of
the SCS, with all Aβ fibers activated by the SCS. The “natural pinch” begins at 300ms (0.3s) and
sustained until the end of the simulation. The projection neuron average firing rate decreases
from an average of 16.72Hz during the “pinch” to an average of 3.92Hz after the initial spike
(measured from 815ms to 850ms). We see an initial spike in projection neurons because of the
weight from the Aβ fibers to the projection neurons (see Table 1). After the 10ms when we see
the effects of the SCS, the projection neuron average firing rate returns to “pinch” levels.

common to refer to the SCS strength in terms of amount of current applied [1]. Initially, we
attempted to simulate the SCS by attributing a higher firing rate to the Aβ fibers during the
time of expected response to the SCS pulse (e.g. 60Hz in comparison to the “natural pinch”
response 9Hz). However, this did not guarantee that every Aβ fiber would spike, and we were
mainly concerned with capturing the synchronization of Aβ fiber spike times in response to the
SCS pulse. Likewise, 60Hz was not the SCS pulse activity, but instead the frequency at which
it was administered in various experiments [1]. We then revised our approach, and automated
the code to place 1s within the spike matrix of the Aβ fiber population, thereby guaranteeing
that the desired amount of Aβ fibers would spike exactly once within the window of time that
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we expect to see the impact of the SCS pulse.

Our new method toward simulating the SCS allows for the visualization of different
“strengths” of the SCS pulse; for instance, the SCS pulse that causes 100 percent of the
Aβ fibers to spike is “stronger” than the pulse that causes 50 percent of the Aβ fibers to spike.
Figure 9 illustrates the average firing rate of the projection neurons in terms of percent of the
“natural pinch” firing rate, when different percentages of the Aβ fiber population are activated
by the pulse. Our model is sensitive to changes in the number of Aβ fibers activated. It is clear
that larger percentages of Aβ fibers activated causes significant inhibition of the projection
neuron response to painful stimulus.

Figure 9. Average firing rate of the projection neuron population in response to a single pulse of
the SCS. Calculated in terms of percent of baseline (“natural pinch”) firing rate. Demonstrates
five different ”strengths” of the SCS, in terms of percentage of Aβ fiber population activated by
the SCS (see Section 4). At 500ms (0.5s) in the simulation, we see the projection neuron firing
rate in response to the “natural pinch” stimulus. At 800ms (0.8s), the SCS is simulated, and
the reaction takes place for a subsequent 10ms duration. The 100 percent strength of the SCS
causes complete dampening of the projection neuron population average firing rate in response
to the simulated “natural pinch.”

We are interested in testing the effectiveness of SCS by investigating whether the SCS pulse
in our model causes a net decrease in the projection neuron firing rate during a painful stimulus.
Our model displays an inhibition of the projection neuron firing rate in response to SCS, but only
after an initial projection neuron spike. This initial increase is due to the weight from the Aβ
fiber population to the projection neurons (see Table 1). Although the Aβ fibers also increase the
firing rate of the inhibitory neuron population, which consequently dampen projection neuron
activity, this intermediate step delays the inhibition of projection neuron firing rate. In effect,
we see the excitatory influence of the Aβ fiber weight on the projection neuron population
firing rate before we see the effects of the Aβ fiber weight on the inhibitory neuron population
firing rate; an increase in the Aβ fiber firing rate immediately increases the projection neuron
firing rate (through the weight gABW ) and the inhibitory neuron firing rate (through the weight
gABI), and so there is a momentary spike in the projection neuron population activity before it
is dampened by the inhibitory neuron population activity through the weight gIW (see Figure 1).
With suitable binning of time and distributing the spikes in the projection neuron population
average firing rate, we are able to minimize the appearance of this initial spike (see Figure
11); previous literature showcases similar tactics [1]. However, the initial spike in projection
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neuron firing rate becomes problematic when we attempt to use our model to replicate other
experimental scenarios. This issue becomes relevant when we model the implementation of
multiple pulses of the SCS in our model (see Figure 12). Although our model is capable of
simulating this process, the initial spikes in the projection neuron population average firing rate
are too extreme for the subsequent decreases to overcome over the sum of several pulses. The
result is a visible net increase in percent of projection neuron firing rate. For this reason, we are
unable to recreate the exact results from Zhang et al., although we are able to capture a similar
process [4].

Figure 10. The effect of SCS on
acute pain. Adapted from Arle
et al (2014).

Figure 11. Comparison of different strengths of SCS (in
terms of percentage of the Aβ fiber population activated by
a single SCS pulse) on the percent decrease in projection
neuron population average firing rate. The sum of the time
bins is equal to a net decrease of 12.61.

Figure 12. Projection neuron population average firing rate as a percentage of baseline
(“natural pinch”) firing rate. Simulation of many SCS pulses, administered every 200ms with
the first pulse at 800ms (0.8s). The increase in projection neuron firing rate at the onset of
each SCS pulse in response to the sudden increase in firing rate of the Aβ fiber population,
causes there to be a net increase in the average firing rate of the projection neuron population
in response to multiple SCS pulses.
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4. Discussion

Our neuron population model successfully simulates the body’s reaction to painful stimulus
using computational strategies. In addition, our model captures the dorsal horn circuit response
to SCS; although we are in the process of improving the projection neuron initial response to
the SCS, the population firing rate does decrease using our model equations and weights. The
model is easy to use and adaptable to changes in the population weights, the duration of the
SCS effects, the strength of the SCS simulated, and many other parameters. In comparison to
neurological models, our model provides an accessible, mathematically clear and manipulable
simulation of the dorsal horn’s pain processing function. Our model could potentially be useful
in predicting the SCS strength that is effective for producing a net decrease in projection neuron
firing rate; this could influence decisions in research settings, such as where to effectively place
electrodes in order to target a certain percentage of the Aβ fiber populations.

However, we also came across challenges in producing our model, and we consider ways to
improve it. While experimenting with the weights, we found that some responses were easier
to generate than others (see Section 2.4). For instance, we found it relatively easy to influence
the projection neuron average firing rate with small changes in the gAβW and gAδW weights.
Similarly, the duration of initial projection neuron spike at the onset of the SCS is sensitive to
the gAβI weight. On the other hand, within our model it is difficult to elevate the excitatory
neuron firing rate. The excitatory neuron population average firing rate is about 0.006 for the
entire simulation (see Figure 8). Even when the “pinch” is administered, we do not see a visible
change in the average firing rate. This is likely because the excitatory neuron population receives
input only from the C fiber population (see Table 1, Figure 2), which have a “pinch” stimulation
firing rate of only 2.5Hz. This means that the excitatory neuron population receives very little
input, especially in comparison to the other neuron populations. We found that we barely see
any excitatory neuron population activity until we set the weight from the C fiber population
to the excitatory neurons to at least gCE=8 or gCE=9 (the ideal weight is gCE=11). The issue
with raising this weight so high is that it is out of scale with the other weights in the model
(see Table 1). We attempted to increase all of the weights to be in scale with a high C-to-
E weight. However, this option made it difficult to dampen excitatory neuron activity under
realistic circumstances, such as when inhibitory neurons become activated. We decided to settle
with our current set of weights, with the gCE=5, which is about as high as it can go without
being out of scale with the other weights. There is little known information about the weights
between the afferent fibers and the projection neurons [1]; this is why we based our approach
to finding the appropriate set of weights by comparing the resulting output with qualitative
experimental results. Perhaps this set of weights could be modified slightly to encapsulate the
realistic behavior of the excitatory neuron population with a painful stimulus.

One future adaptation for our model could be to adjust the set of weights so that the
projection neuron average firing rate during the simulated “natural pinch” is closer to 25Hz.
We also aim to improve the model of many SCS pulses (see Figure 12) so that the simulation
yields a net decrease in percent of average projection neuron firing rate. To accomplish this, we
would like to minimize the initial spike in projection neuron firing rate in response to the SCS
pulse.

Overall, we have found that Spinal Cord Stimulation is an effective treatment for inhibiting
prolonged, dull pain. However, it depends on the strength of the SCS applied, and the way in
which the projection neuron population reacts to the initial spike in the Aβ fiber firing rate.
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