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Abstract

We construct the first balanced triangulation of S2×Sd−3 with 4d vertices for all
d ≥ 3, using a sphere decomposition inspired by handle theory. We then determine
some of its properties as well as use computational methods to search for a minimal
triangulation.

1 Introduction

Minimal triangulations of manifolds are an important research object in combinatorial and
computational topology. In this paper, we study triangulations of Si×Sd−i−1 with an ad-
ditional structure called balancedness. A (d− 1)-dimensional simplicial complex is balanced
provided that its graph is d-colorable. Many important classes of complexes arise as bal-
anced complexes, such as barycentric subdivisions of regular CW complexes and Coxeter
complexes. It is natural to ask the following questions: what is the minimal number of
vertices required for a non-balanced or balanced triangulation of Si×Sd−i−1? Is the minimal
triangulation unique?

From a result of Brehm and Kühnel [2], we know that a combinatorial triangulation of
Si×Sd−i−1 has at least 2d − i + 2 vertices. The problem is also fairly well understood for
both the balanced and unbalanced cases of sphere bundles over the circle. A triangulation
of S1×Sd−2 with 2d + 1 vertices was constructed by Kühnel [8] in 1986. Later, two groups
of researchers, Bagchi and Datta [1] as well as Chestnut, Sapir and Swartz [3], found in 2008
that Kühnel’s construction is indeed the unique minimal triangulation for the case when d
is odd. Also when d is even, the minimum triangulation requires 2d + 2 vertices and is not
unique. In the balanced case, the result is similar: Klee and Novik [6] provided a balanced
triangulation of S1×Sd−2 with 3d vertices for odd d and with 3d+ 2 vertices otherwise, and
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Zheng [12] showed that the number of vertices for the minimal triangulation is indeed 3d for
odd d and 3d+ 2 otherwise.

Another research direction on this topic is to find small triangulations of Si×Sd−i−1. The
best general result is from [5], where a centrally symmetric triangulation of Si×Sd−i−1 with
2d + 2 vertices is constructed as a subcomplex of the octahedral d-sphere. In addition, the
minimal triangulation of S2×Sd−3 for d ≤ 7 as well as the minimal triangulation of S3×S3

are obtained using BISTELLAR, a program written by Lutz [9]. However, as of yet, no
balanced triangulations of Si×Sd−i−1 for 2 ≤ i ≤ d− 3 exist in literature.

In this paper, we construct a balanced triangulation of S2×Sd−3 with 4d vertices for
all d ≥ 3. The intuition behind our construction is from a sphere decomposition inspired
by handle theory. Recently, Izmestiev, Klee, and Novik [4] proved that any two balanced
PL homeomorphic closed combinatorial manifolds can be connected using a sequence of
cross-flips. In particular, given a balanced triangulation of a manifold, this allows us to
computationally search for a minimal balanced triangulation. The ongoing project is to
develop a program with Lorenzo Venturello which applies cross-flips to search for the minimal
balanced triangulation of S2×Sd−3 for small d.

The paper is structured as follows. In section 2, we review the basics of simplicial
complexes, balanced triangulations, and other definitions that may be relevant. In section
3, we present our main construction and show that it does indeed triangulate the desired
manifold. We then provide the face enumeration as well as the automorphism group. In
Appendix A, we briefly discuss the computational work done towards finding a minimal
balanced triangulation.

2 Preliminaries

A simplicial complex ∆ with vertex set V is a collection of subsets σ ⊆ V , called faces, that is
closed under inclusion, such that for every v ∈ V , {v} ∈ ∆. For σ ∈ ∆, let dimσ := |σ| − 1
and define the dimension of ∆, dim ∆, as the maximum dimension of the faces of ∆. A
face σ ∈ ∆ is said to be a facet provided that it is a face which is maximal with respect
to inclusion. We say that a simplicial complex ∆ is pure if all of its facets have the same
dimension. If ∆ is (d − 1)-dimensional and −1 ≤ i ≤ d − 1, then the f -number fi = fi(∆)
denotes the number of i-dimensional faces of ∆. The star and link of a face σ in ∆ is defined
as follows:

st∆ σ := {τ ∈ ∆ : σ ∪ τ ∈ ∆} lk∆ σ := {τ ∈ st∆ σ : τ ∩ σ = ∅}

When the context is clear, we may simply denote the star and link of σ as st(σ) and lk(σ).
We also define the restriction of ∆ to a vertex set W as ∆[W ] := {σ ∈ ∆ : σ ⊆ W}. A
subcomplex Ω ⊂ ∆ is said to be induced (sometimes full) provided that for all faces F ∈ ∆,
if every vertex v ∈ F is a vertex of Ω, then F is a face in Ω.The i-skeleton of a simplicial
complex ∆ is the subcomplex containing all faces of ∆ which have dimension at most i. In
particular, the 1-skeleton of ∆ is the graph of ∆.
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A simplicial complex ∆ is a simplicial manifold, or equivalently, a triangulated manifold,
if the geometric realization of ∆ is homeomorphic to a manifold. The boundary complex of
a simplicial d-ball is a simplicial (d − 1)-sphere. We write H̃∗(∆; k) to denote the reduced
homology of ∆ with coefficients in Z.

A (d − 1)-dimensional simplicial complex ∆ is called balanced if the graph of ∆ is d-
colorable; that is, there exists a coloring map κ : V → [d] such that κ(x) 6= κ(y) for all edges
{x, y} ∈ ∆. Here [d] = {1, 2, · · · , d} denotes the set of colors.

Let ∂C∗d be the boundary complex of the d-crosspolytope. It is a well known result that
this is a balanced vertex-minimal triangulation of the (d − 1)-sphere. Label the vertex set
of ∂C∗d as {x1, . . . , xd, y1, . . . , yd} such that xi, yi form a pair of antipodal vertices for all i.
Every facet of ∂C∗d can be written in the form u1u2 . . . ud, where each ui ∈ {x, y}. We say
a facet has a switch at position i if ui and ui+1 have different labels. Let B(i, d) be the
subcomplex of ∂C∗d that contains all facets with at most i switches. For example, B(0, d)
consists of the two disjoint facets {x1, . . . , xd} and {y1, . . . , yd}. The following lemma follows
directly from Theorem 1.2 in [5]. Here, Di denotes the i-dimensional unit ball.

Lemma 2.1. For 0 ≤ i < d− 1, the complex B(i, d) satisfies the following properties:

1. B(i, d) contains the entire i-skeleton of ∂C∗d as a subcomplex.

2. The boundary of B(i, d) is homeomorphic to Si×Sd−i−2.

3. B(i, d) is a balanced cs combinatorial manifold whose integral (co)homology groups
coincide with those of Si. Also, B(0, d) ∼= Dd−1 × S0 and B(1, d) ∼= Dd−2 × S1.

4. The complement of B(i, d) in ∂C∗d is simplicially isomorphic to B(d− i− 2, d).

5. B(i,d) admits a vertex-transitive action of Z2 ×Dd if i is even and of D2d if i is odd.

3 Balanced Triangulation of S2×Sd−3

In this section, we present our main construction for a balanced triangulation of S2×Sd−3.
The geometric intuition of our construction comes from handle theory. The sphere Sd−1

admits the following decomposition:

Sd−1 = ∂Dd = ∂(D2 ×Dd−2) = (∂D2 ×Dd−2) ∪ (D2 × ∂Dd−2) = (S1×Dd−2) ∪ (D2 × Sd−3).

Let S be a triangulated (d− 1)-sphere that has the decomposition S = B1 ∪∂B1=∂B2 B2,
where B1

∼= S1×Dd−2, B2
∼= D2 × Sd−3, and ∂B1

∼= ∂B2
∼= S1×Sd−3 (where Di denotes the

i-dimensional unit ball). Note that S2×Sd−3 admits the decomposition into (D2 × Sd−3) ∪
(D2 × Sd−3) ∼= B2 ∪ B2. Then, from S we can form a triangulation of S2×Sd−2 in the
following way: take two copies of B2 and denote them as B2 and B′2. If ∂B2 is an induced
subcomplex in B2, then we glue B2 and B′2 along their boundaries. The resulting complex
is homeomorphic to S2×Sd−3. However, if ∂B2 is not an induced subcomplex of B2, then
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usually we cannot glue B2 and B′2 by identifying their boundaries directly and still obtain
a triangulated manifold. An alternative method is to find a complex N ∼= ∂B2 × D1 with
∂N = ∂B2 ∪ ∂B′2 so that N serves as a tubular neighborhood of both ∂B2 and ∂B′2. Finally
the complex B2 ∪N ∪B′2 is a triangulation of S2×Sd−3.

Our approach of constructing a balanced triangulation of S2×Sd−3 is by finding suitable
balanced candidates of B2 and N as described above. We begin by defining a variation of
the usual connected sum.

Definition 3.1. Consider (Γ1, σ1) and (Γ2, σ1), where Γi is the boundary complex of the
d-cross-polytope, and σi is a fixed facet of Γi. Let κ be the coloring map on Γ1 ∪ Γ2. If ei is
an edge in Γi but not in ±σi and κ(e1) = κ(e2), then the 3-connected sum (Γ1#Γ2, σ1#σ2)
is obtained by deleting ei from Γi, and gluing Γ1− e1 with Γ2− e2 by identifying the vertices
of the same color in ∂ stΓ1 e1 and ∂ stΓ2 e2.
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(a) Γ1 and Γ2; here σ1 = {y1, y2, y3} and
σ2 = {x1, y2, y3}
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(b) (Γ1#Γ2, σ1#σ2)

Figure 1: The 3-connected sum (Γ1#Γ2, σ1#σ2): delete the edge {y3x
′
1} in both Γ1 and Γ2,

then glue Γ1 and Γ2 along the 4-cycle (y3, x
′
2, x
′
1, y2).

The following properties of the 3-connected sum justify the notation (Γ1#Γ2, σ1#σ2) in
the definition.

Property 3.2. Let Γ1 and Γ2 be two d-crosspolytopes. Furthermore, Γ1 has antipodal facets
σ1 = {x1, . . . , xd}, −σ1 = {y1, . . . , yd}, and Γ2 has antipodal facets σ2 = {xd+1, . . . , x2d}, −σ2 =
{yd+1, . . . , y2d}. Then (Γ1#Γ2, σ1#σ2) satisfies the following properties:

1. The complex is a balanced triangulation of Sd−1.

2. The restriction of (Γ1#Γ2, σ1#σ2) to V (σ1) ∪ V (σ2) is the usual connected sum of
simplices σ1#σ2.

3. The link of every edge e = {xi, yj} in (Γ1#Γ2, σ1#σ2) is the boundary complex of a
(d− 2)-crosspolytope.
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Proof: Part 1 is clear from the construction. For part 2, if e1 = {xi, yj} in Γ1, then the link
lkΓ1 e1 is the boundary of a (d−2)-cross-polytope containing the antipodal facets σ1\{xi, xj}
and (−σ1)\{yi, yj}. Similarly, for e2 = {xk, yl} in Γ2, the link lkΓ2 e2 has antipodal facets
σ2\{xk, xl} and (−σ2)\{yk, yl}. Hence the restriction of (Γ1#Γ2, σ1#σ2) to V (σ1) ∪ V (σ2)
is obtained by taking the union of σ1 and σ2 and identifying σ1\{xj} with σ2\{xl}. In this
manner, we get the connected sum σ1#σ2.

For part 3, let ∆ denote the boundary complex on which Γ1 and Γ2 are glued to-
gether. If e /∈ ∆, there is nothing to prove. Otherwise, assume without loss of generality
that e = {x1, y2} and the edge e′ = {x1, y3} is deleted from Γ1 to form (Γ1#Γ2, σ1#σ2).
Then, lkste′ Γ1 e = {y3} ∗ Σ, where Σ is the boundary of the crosspolytope on vertices
{x4, y4, . . . , xd, yd}. Hence, by construction, the link of e in (Γ1#Γ2, σ1#σ2) must be the
suspension of Σ; here the suspension vertices are the antipodal vertices of y3 in Γ1 and Γ2

respectively. �

The above properties ensure that it is possible to take the 3-connected sum inductively.
To form (Γ1# . . .#Γk, σ1# . . .#σk) from (Γ1# . . .#Γk−1, σ1# . . .#σk−1) and (Γk, σk), we
take an edge e1 ∈ (Γ1# . . .#Γk−1, σ1# . . .#σk−1) but not in σ1# . . . σk−1, then take an edge
e2 ∈ Γk\σk so that κ(e1) = κ(e2), and then construct as in Definition 3.1.

Recall that if Γ is a pure simplicial complex, then as long as there exist two facets F
and F ′ on Γ and a map φ : F → F ′ so that v and φ(v) do not have a common neighbor
for every v ∈ F , then we can remove F, F ′ and identify ∂F with ∂F ′ to get Γφ. This is
called a handle addition. Similarly, assume that there are two edges e1 and e2 of the same
color in (Γ1# . . .#Γk, σ1# . . .#σk) but not in A := σ1#σ2 . . .#σk or −A. Note that st(ei)
is a cross-polytope with antipodal facets st(ei)[V (A)] and st(ei)[V (−A)] for i = 1, 2. If the
identification maps φ : st(e1)[V (A)]→ st(e2)[V (A)] and φ′ : st(e1)[V (−A)]→ st(e2)[V (−A)]
are well-defined, then the maps φ and φ′ naturally extend to a map φ̄ : st(e) → st(e′) if for
every v ∈ st(e), v and φ(v)(or φ′(v)) do not have a common neighbor. In this way we obtain
a balanced simplicial complex ((Γ1#Γ2 . . .#Γk)

φ̄, (σ1#σ2 . . .#σk)
φ) by removing e, e′ and

identifying lk(e) with φ̄(lk(e)) = lk(e′). We call this the 3-handle addition. Note that as long
as the handle addition is well-defined, f0((Γ1#Γ2 . . .#Γk)

φ̄) = 2f0((σ1#σ2 . . .#σk)
φ) = 2k

regardless of the dimension of Γi.
We are now ready to construct a balanced triangulation of S2×Sd−3 with 4d vertices.

We will write Γ1#Γ2 to denote the 3-connected sum if σ1 and σ2 are clear from the context.
Also, to simplify notation, we will sometimes write x1 . . . xm to denote the face {x1, . . . , xm}.

Example 3.3. Let d ≥ 3. Take two d-crosspolytopes P and P ′. The vertex sets of P
and P ′ are {x1, . . . , xd, y1, . . . , yd} and {x′1, . . . , x′d, y′1, . . . , y′d} respectively. We let σi =
x1 . . . xiyi+1 . . . yd for 1 ≤ i ≤ d and let σi = y1 . . . yixi+1 . . . xd for d + 1 ≤ i ≤ 2d. Then
the complex ∆1 := ∪2d

i=1σi is exactly B(1, d). We further partition the boundary of P as
∂P = ∆1 ∪∂∆1 ∆2. By Lemma 1.1, ∆2

∼= B(d − 3, d) and ∆1 ∩ ∆2 is homeomorphic to
S1×Sd−3.

Next, define a simplicial map f : ∂P → ∂P ′ induced by the following bijection on the
vertex sets:

xi 7→ x′i+1, yi 7→ y′i+1 for 1 ≤ i ≤ d− 1; xd 7→ y′1, yd 7→ x′1.
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By Lemma 2.1, the complex ∆1 admits a vertex-transitive action by the dihedral group
D2d of order 4d, where a generator is given by the map we have chosen (Theorem 1.2 of [5,
page 6]). Hence f is a simplicial isomorphism and f(∆1) ∼= B(1, d). For each i, there is a
unique d-cross-polytope Γi containing σi and f(σi) as antipodal facets. Next, we check that
we can take the 3-connected sum of Γi and Γi+1 inductively. Without loss of generality,
assume that 1 ≤ i ≤ d; otherwise, we can relabel by switching x and y. Note that for
i ≤ d− 2,

σi = x1x2 . . . xiyi+1yi+2 . . . yd, σi+1 = x1x2 . . . xi+1yi+2yi+3 . . . yd,

and f(σi) = x′2x
′
3 . . . x

′
i+1y

′
i+2y

′
i+3 . . . y

′
dy
′
1, f(σi+1) = x′2x

′
3 . . . x

′
i+2y

′
i+3y

′
i+4 . . . y

′
dy
′
1.

Hence, σi ∩ σi+1 = x1x2 . . . xiyi+2 . . . yd and f(σi) ∩ f(σi+1) = x′2x
′
3 . . . x

′
i+1y

′
i+3 . . . y

′
dy
′
1. The

missing indices are i + 1 and i + 2 respectively, so we let ei = x′i+1yi+2. It follows that
Γi ∩ Γi+1 = stΓi

ei = stΓi+1
ei and hence the 3-connected sum is well defined. Similarly,

Γd−1 ∩ Γd = stΓd
{x′d, x1} and Γd ∩ Γd+1 = stΓd

{y′1, x2}. Inductively, we form a complex
Γ = ((Γ1#Γ2 . . .Γ2d)

φ̄,∆1) which contains ∆1 and f(∆1) as subcomplexes.
We partition Γ as Γ = ∆1 ∪ f(∆1) ∪ N , so that N ∩ ∆1 = ∂∆1 and N ∩ f(∆1) =

∂f(∆1). N is then the tubular neighborhood that we would like to construct. Finally, let
Σ = ∆2 ∪∂∆1 N ∪∂f(∆1) f(∆2). (This is well defined as by Lemma 2.1, ∂∆1

∼= ∂∆2.)
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σ4
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σ6

(a) ∆1

x′1
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x′1

x′3

x′2

y′1
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f(σ1)

f(σ2)

f(σ3)

f(σ4)
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(b) f(∆1)

y′2
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x1

x3

x′
3

x′
1

y′3 x′
2

y′1

y3 x2

y1

(c) Γ

Figure 2: The complexes ∆1 and f(∆1) when d = 3, and the resulting Γ constructed using
the previously described sequence of connected sums.

In the specific case of d = 3, we have the manifold S2×S0, which consists of two disjoint
spheres. In this case, the construction gives the boundary of two 3-cross-polytopes, which is
the minimal triangulation. For arbitrary d, we will need the following theorem from [7] to
show that Σ triangulates the desired manifold.

Theorem 3.4. Let M be a simply connected codimension-1 submanifold of Sd−1, where
d ≥ 6. If M has the homology of Si×Sd−i−2 and 1 < i ≤ d/2− 1, then M is homeomorphic
to Si×Sd−i−2.
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Next we check that Σ satisfies all the conditions as described in the above theorem.

Lemma 3.5. The complex Σ given in Example 3.3 is simply connected for d ≥ 5.

Proof: Since B(d− 3, d) contains the 2-skeleton of ∂C∗d , it follows that both ∆2 and f(∆2)
are simply connected. Then A := ∆2 ∪ Γ′ and B := Γ′ ∪ f(∆2) are also simply connected.
Write Σ = int(A) ∪ int(B). It is easy to see that both Σ and A ∩ B = int(Γ′) are path
connected. The result follows since the union of two simply connected open subsets with
path-connected intersection is simply connected. �

Proposition 3.6. The complex Σ constructed above is a balanced triangulation of S2×Sd−3

for d ≥ 5.

Proof: By the theorem and the lemma above, it suffices to check that Σ has the same
homology as S2×Sd−3 for d ≥ 4. Applying the Mayer-Vietoris sequence on the triple (∆2 ∪
f(∆2),Γ′,Σ), for all i, we have:

· · · → Hi+1(Σ)→ Hi(∂∆2 ∪ ∂f(∆2))→ Hi(Γ
′)⊕Hi(∆2 ∪ f(∆2))→ Hi(Σ)→ · · · .

Since Γ′ ∼= ∂∆2 × [0, 1] , 1
2
βi(∂∆2 ∪ ∂f(∆2)) = βi(Γ

′) = 1 for i = 1, d − 3, d − 2, and zero
otherwise. Also by the lemma, βi(∆2 ∪ f(∆2)) = 2βi(∆2) = 2 for i = d − 3, and zero
otherwise. Hence, we obtain that

0→ Hd−1(Σ)→ Hd−2(∂∆2 ∪ ∂f(∆2))→ Hd−2(Γ′)⊕Hd−2(∆2 ∪ f(∆2)) = 0,

which implies that βd−1(Σ) = 1. Also

0→ Hd−2(Σ)→ Hd−3(∂∆1 ∪ ∂f(∆1))→i Hd−3(Γ′)⊕Hd−3(∆2 ∪ f(∆2))→ Hd−3(Σ)→ 0.

Since the map i must be injective, it follows that βd−2(Σ) = 0 and βd−3(Σ) = 1. Finally,

0→ H2(Σ)→ H1(∂∆2 ∪ ∂f(∆2))→i′ H1(Γ′)→ H1(Σ)→ 0.

Again, the map i′ is surjective, which forces β2(Σ) = 1 and β1(Σ) = 0. It is clear to see
that the other Betti numbers of Σ are zero. Finally, the balancedness of Σ follows from the
construction. �

Note that the construction in Figure 2 is for the case d = 3, and forms a balanced
triangulation of S2×S0 which is indeed minimal. The case of d = 4, where Σ triangulates
S3×S1, can be checked computationally. However, from [12], we know that this triangulation
of 16 vertices is not minimal, as a minimal triangulation of S1×S3 contains 14 vertices.

We list several properties of Σ:

Proposition 3.7. For d ≥ 4, let Σ be the triangulation of S2×Sd−3 as constructed in
Example 3.3. Then, Σ has the following face numbers.
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• f0(Σ) = 4d

• f1(Σ) = 4d(2d− 3)

• fd−1(Σ) = (d+ 2)2d − 8d.

Proof: The complex Σ has 4d vertices since f0(Σ) = f0(∆2) + f0(f(∆2)). By the construc-
tion, there are 2d edges e1 = {x′2, y3}, . . . , e2d = {x′1, y2} deleted from the cross-polytopes
Γ1,Γ2, . . . ,Γ2d to form Γ. Each Γi and lkΓi

ei are (d−1)-dimensional and (d−3)-dimensional
octahedral spheres respectively, so we have that f1(Γi) = 2d(d − 1) and f1(stΓi

ei) =
2(d− 1)(d− 2) + 1. Thus,

f1(Γ1#Γ2 . . .Γ2d)
φ) =

2d∑
i=1

(
f1(Γi)− f1(stΓi

ei)− 1
)

= 4d2(d− 1)− 4d(d− 1)(d− 2)− 4d

= 4d(2d− 3).

It follows from f1(∆1) = f1(∆2) that f1(Σ) = f1(Γ) = 4d(2d− 3). Similarly, since the facets
in each stΓi

ei are disjoint,

fd−1(Γ) =
2d∑
i=1

(
fd−1(Γi)− 2fd−1(stΓi

ei)
)

= 2d(2d − 2d−1)

= d2d.

It follows that fd−1(Σ) = fd−1(Γ) − 2fd−1(∆1) + 2fd−1(∆2) = d2d − 4d + (2d+1 − 4d) =
(d+ 2)2d − 8d. �

Note that the construction for d = 3 satisfies the same face number relations, with the
exception of f1. In this case, there are 24 edges rather than 36, since edges are lost when we
replace ∆1 with ∆2. This does not happen when d ≥ 4 as by Theorem 1.2 in [5], we have
that for d ≥ 4, B(d− 3, d) contains all edges in the cross-polytope.

Proposition 3.8. For d ≥ 4, Aut(Σ) admits a vertex-transitive action of Z2 ×D2d.

Proof: A simplicial map g on the simplicial complex Σ is an isomorphism if it gives a
bijection on the facets of Σ. A necessary condition for g to be an automorphism is that it
sends the missing edges in Σ to missing edges in ∆. Define the following three permutations,
modified from the proof of Theorem 1.2(b) in [5]:

• D maps xj to yj, yj to xj, x
′
j to y′j and y′j to x′j.

• E ′ maps xj to x′d−j+1, yj to y′d−j+1, x′j to xd−j+1 and y′j to yd−j+1.

• R′ maps xd to y1, yd to x1, xj to xj+1, yj to yj+1, and similarly for x′j and y′j.
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The maps D and E ′ have order 2, whereas R′ has order 2d. Also note that E ′ is the
permutation E from [5] composed with a switching between the prime and nonprime vertices.
We know that of the edges in Σ, the only missing edges are edges between antipodal vertices
in Γi and the edges deleted when we join Γi and Γi+1; they are {x′iyi+1}, {y′ixi+1} for 1 ≤
i ≤ d− 1 together with {x′dx1}, {y′dy1}. It is straightforward to check that D, E ′, and R′ are
bijections on the vertices of Σ, and additionally fix setwise the set of missing edges. Since
E ′R′ = R′−1E ′−1, E ′ and R′ generate D2d, and since D commutes with both E ′ and R′, we
have that the three together generate Z2 ×D2d.

By Theorem 1.2(b) of [5], we have that facets in ∆1 and f(∆1), as well as those in ∆2

and f(∆2), are mapped bijectively by g = D,E ′ or R′. Therefore, it suffices to show that
the facets in the tubular neighborhood N are mapped bijectively. Note that any facet F in
N must also be contained in some Γi. Therefore, the only way in which g(F ) could not be
a facet of Σ is if g(F ) is in the star of an edge which is deleted. However, as we observed
above, g gives bijection on the missing edges of Σ, i.e., g(F ) ∈ st(g(e)) for some missing edge
e if and only if g ∈ st(e). Hence g is a bijection on the facets of Σ, and so g ∈ Aut(Σ). �

For the case of d = 3, we can directly compute the automorphism group. The construction
consists of two disjoint octahedron, with an additional possibility of interchanging the two
octahedron. Then, the automorphism group is given by Z2 × Oh × Oh, where Oh denotes
the octahedral group of order 48. This group has order 2 · 482 = 4608.
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A Appendix: Computational Results

This appendix will briefly discuss our computation results. We developed a Python/Sage
program to produce our 4d vertex triangulation of S2×Sd−3. In addition, working with
Lorenzo Venturello, we created an analog of the BISTELLAR program for balanced simplicial
complexes to attempt to reduce the number of vertices of a given triangulation. The program
uses a simulated annealing approach, much like the method BISTELLAR uses. However,
the complexity of finding shellable subcomplexes in the d-cross-polytope grows exponentially
with d, and so the program is highly inefficient for d > 4. In addition, cross-flip sequences
connecting two different triangulations tend to be much more delicate and structured, and
so simulated annealing works poorly on balanced complexes which cannot be immediately
reduced by a cross-flip. A few heuristics could be used to improve the search, including
attempting to minimize the ratio f2/f1 or the sum (or square-sum) of the degree of the
vertices in the 1-skeleton of the triangulation.
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