
Ellipsoid Collision as a Linear Complementarity Problem

Izak Oltman, Jaewon Hur

September 4, 2017

Contents

1 Introduction 1

2 Outline of Algorithm 2

3 Preliminary Notations 2
3.1 Coordinates . 2
3.2 Quaternions . 2
3.3 Ellipsoids . 3

4 The LCP 3

5 Distance functions and their Jacobians 4
5.1 Ellipsoid - Ellipsoid Distances . 5
5.2 Ellipsoid - Plane Distance . 5
5.3 Ellipsoid - Sphere Distances . 6
5.4 Jacobians of the distance functions . 7

6 Adding Friction 9
6.1 Friction Problems . 10

7 Results 10
7.1 Self Convergence . 10
7.2 Comparing Values of dt . 17

7.2.1 Ellipsoid Falling onto Plane . 18
7.2.2 Ellipsoids Arranged in a Cube . 19

7.3 Scaling . 19

8 Conclusion 22

9 Appendix 22
9.1 Non Unique Point to Sphere . 22

1 Introduction

This report finalizes a project under a Research Experience for Undergraduates (REU) program at the Uni-
versity of Michigan, Ann Arbor. We worked under Professor Eduardo Corona, tasked to build an algorithm
aimed to avoid rigid body penetration in physics simulations. There are many applications for such an

1

application. One example arises when trying to design a truck to drive over sand. To accurately model
this scenario, you would need to write code to keep track of each particle of sand making sure no particle
intersects, and what forces are being exerted where. Another example would be modeling particles suspen-
ded in a fluid, such as bacterium or iron particles. In this case not only must each particle be tracked, but
any movement of a particle will affect all other bodies through the fluid medium. Such an algorithm to
handle high number of particles would need to be robust and accurate. This problem has been tackled many
different ways, one of which is to pose it as a Linear Complementarity Problem. Our algorithm, which works
for rigid ellipsoids, will determine at each discrete time step what contact forces are required to ensure no
two bodies penetrate each other. We kept the mobility matrix as user provided so that this algorithm could
ideally be used as a module in a fluid simulation. After this, we added friction to the model, still as a linear
complementarity problem.

2 Outline of Algorithm

Here is a rough outline of the algorithm for each time step

1. We are given body information (position and orientation) along with the velocity information in the
next time step without contact forces

2. From given information, construct a matrix (A) and a vector (b) to model the linear complementarity
problem (LCP) 0 ≤ Aλ+ b ⊥ λ ≥ 0

3. Use a LCP (in our case the Newton Minimum Map Method) solver to get λ, which contains the
components of the contact impulses and torques required to avoid intersection

4. Return a vector containing the contact impulses and torques required to avoid intersection

3 Preliminary Notations

3.1 Coordinates

The center of mass of each ellipsoid is stored as vector r ∈ R3, which is in cartesian coordinates. The
orientation of each body is stored interchangeably as a normalized quaternion θ ∈ R4 or by rotations about
each axes θ̄ = (θx θy θz)

t.

3.2 Quaternions

The formulation of quaternions is taken from [3]. Each ellipsoid quaternion represents rotation required to
return the ellipsoid to it’s principle orientation (ie on its principal axes). This rotation is characterized by
a rotation of φ radians about a vector α. Then θ = (cos(φ/2), sin(φ/2)αt)t. A quaternion θ = (s, p) with
p ∈ R3 can be tranformed into rotation matrix Rθ via

Rθ = 2(ppt + sCp + (s2 − 1/2)I3) (1)

Where Cpv = p× v for any arbitrary 3-vector v and I3 is a 3 by 3 identity matrix. To advance a quaternion
given a angular velocity ω ∈ R3, we have

θn+1 = θn + ψω∆t (2)

With

ψ =
1

2

(
−pt

sI3 − Cp

)
(3)

It is worth noting that quaternions are not used in the formulation of this LCP to determine contact forces,
they are only used when advancing the bodies.

3.3 Ellipsoids

The boundary of an ellipsoid centered at the origin along its principal axes with axes a1, a2, a3 ∈ R>0 is
defined as

{x ∈ R3 :
x2

1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

− 1 = 0} (4)

Which can be written generally as:
{x ∈ R3 : xtΛx− 1 = 0} (5)

With

Λ =

1/a2
1

1/a2
2

1/a2
3

 (6)

Now suppose this ellipsoid is oriented by the quaternion θ and centered at r, then letting Rθ ∈ R3×3 be the
corresponding rotation matrix, then the ellipsoid boundary is defined as

{x ∈ R3 : (x− r)tRθΛRtθ(x− r)− 1 = 0} (7)

= {x ∈ R3 : (x− r)tA(x− r)− 1 = 0} (8)

4 The LCP

The purpose of this algorithm is to, at every time step, determine what contact forces are required to avoid
intersections of all ellipsoid pairs. For simplicity suppose the system only contains two ellipsoids. This can
be posed as the nonlinear complementarity problem (NCP):

0 ≤ Φ ⊥ λ ≥ 0 (9)

Where Φ is the distance between two bodies, λ is the contact force, and a ⊥ b means that a ·b = 0. This non-
linear complementarity problem can be approximated as the linear complementarity problem (LCP):

0 ≤ Φn+1 ⊥ λ ≥ 0 (10)

Where the n+1 superscript represents the distance between two bodies in the next time step. By linearizing
the distance function Φ, we can get

Φn+1 ∼= Φn + dt(
∂Φ

∂qi
)tun+1

i + dt(
∂Φ

∂qj
)tun+1

j (11)

The subscripts i and j are the indices of the two bodies that are in danger of intersecting. (∂Φ
∂q) is a

vector containing the partial derivatives of the distance function with respect to changes in the bodies six
orientations (drx, dry, drz, dθx, dθy, dθz). u is the velocity of the body, again a 6 dimensional vector containg
both translational and angular velocity information and equals (ṙt, ωt)t. dt is the step size for the time
discretization. The velocity needs to be linearized as well as

un+1 ∼= un + MF (12)

Where M represents the mobility matrix of a body, which inputs impulse forces and torques, and outputs
translational and angular velocities. In the case of just rigid body collisions it is the diagonal matrix.

m−1

m−1

m−1

I−1

 (13)

with m as the mass and I the moment of inertia. F ∈ R6 represents the force and torque impulses applied
to the body, which can be broken up into external and contact impulses:

F = Fexternal + Fcontact (14)

Fcontact = N λ (15)

Where N ∈ R6 is the direction of the contact force and torque. It will later be shown that N = (∂Φ
∂q).

Now letting the velocity of the body in the next time step be denoted V = un + MFexternal, our LCP then
becomes, after dividing by dt:

0 ≤ ((
∂Φ

∂qi
)tMiNi + (

∂Φ

∂qj
)tMjNj)λ+ (

Φn

dt
+ (

∂Φ

∂qi
)tVi + (

∂Φ

∂qj
)tVj) ⊥ λ ≥ 0 (16)

This then can be modified to model an arbitrary number of bodies with an arbitrary number of collisions.
The new formulation will be

0 ≤ (∂Φ)t M N λ+ (1/dt)(Φn + ε) + (∂Φ)t V ⊥ λ ≥ 0 (17)

Given m collisions, with n bodies, and suppose collision i refers to bodies indexed by a and b, then we have
∂Φ ∈ R6n×m, with

∂Φ =

... collisioni ...

...
bodya ... (∂Φ

∂qa
) ...

...
bodyb ... (∂Φ

∂qb
) ...

...

 (18)

M ∈ R6n×6n is the mobility matrix. In the case of just rigid body motion, M = diag(Mn ... Mn)
N ∈ R6n×m is the direction of the contact forces, and will be proven to just be (∂Φ).
λ ∈ Rm are all the contact forces, where the ith entry is λi.
Φn ∈ Rm are the distance of body pairs, where the ith entry is Φni
ε ∈ Rm is a fictitious body barrier (tolerance) around each ellipsoid, which must be positive to model
collisions.
V ∈ R6n is the velocity information of all bodies in the next time step without any contact force, where the
6 · ath entry is Va.

5 Distance functions and their Jacobians

With the setup for the LCP done, we now must determine the distance function Φ between ellipsoid -
ellipsoid pairs, and ellipsoid - boundary pairs, along with computing their Jacobians with respect to changes
in orientation.

5.1 Ellipsoid - Ellipsoid Distances

We used the ball method proposed in [1]. This is an iterative function that essentially approximates the
ellipsoids by inscribed spheres. This method is ideal for ellipsoid collisions as it determines the distance
and the two closest points on each ellipsoid which are used as the points of contact and as a guess for the
iteration in the next time step.

5.2 Ellipsoid - Plane Distance

Consider an ellipsoid E and a plane P . Define an ellipsoid by the associated quaternion, three axes lengths,
and center coordinates. Define a plane by a point on the plane and the vector normal.
We shift via converting the quaternion to a rotation matrix, and rotating and shifting both the plane and
ellipsoid so we may rewrite E into the general form f ,

x2

a2
+
y2

b2
+
z2

c2
= 1

and a plane with unit vector (n1, n2, n3). Provided that the ellipsoid and the plane do not intersect, we may
find the points closest to each other via the Lagrange Multiplier method.

∇f =

(
2x

a2
,

2y

b2
,

2z

c2

)
= λ(n1, n2, n3)

=⇒

x = a2λn1

2 ,

y = b2λn2

2 ,

z = c2λn3

2

=⇒ 1 =

(
a2λn1

2

)2

· 1

a2
+

(
b2λn2

2

)2

· 1

b2
+

(
c2λn3

2

)2

· 1

c2

=⇒ λ = ±

√
4

a2n2
1 + b2n2

2 + c2n2
3

and we may plug this back into our original system of equations to find the appropriate x, y, z coordinates
to find our desired point ` = (`1, `2, `3) on the ellipsoid which is closest to the plane. To continue we extend
the line from the ellipsoid point to the plane.

Let p = (p1, p2, p3) represent the point on the plane that is now shifted. From the unit normal vector,
we know that our plane takes the equation

n1x+ n2y + n3z + d = 0

=⇒ d = −(n1p1 + n2p2 + n3p3)

and once we find d, we have our new plane equation. Now, consider the normal line along the point we found
earlier on our ellipsoid defined in parametric form by

x = `1 + n1t

y = `2 + n2t

z = `3 + n3t

and we substitute this into our recently obtained equation

n1x+ n2y + n3z + d = 0

and solve for t, to obtain

t =
−n1`1 − n2`2 − n3`3 − d

n2
1 + n2

2 + n2
3

and then we may plug t back into the system of equations for the line to obtain the point on the plane closest
to the ellipsoid.

5.3 Ellipsoid - Sphere Distances

Next we want to determine the closest distance of an ellipsoid in a sphere to the boundary of the sphere.
Through translations and rotations, this can be simplified to the case where the ellipsoid is centered at the
origin, and the axes are aligned along its principle axes. Our ellipsoid boundary is then defined as

{x ∈ R3 | xtΛx− 1 = 0} (19)

Λ =

1/a2
1

1/a2
2

1/a2
3

 (20)

Now instead of finding the closest distance from the ellipsoid to the boundary, it is equivalent to find the
furthest distance on the ellipsoid from the center c ∈ R3. This minimization problem can be posed as a
Lagrange multiplier:

x− c+ λΛx = 0 (21)

xtΛx− 1 = 0 (22)

This then gives us

xi =
cia

2
i

a2
i + λ

for i = 1, 2, 3 (23)

Using this we can write λ as

f(λ) =

3∑
i=1

cia
2
i

∏
j 6=1

(a2
j + λ)2 −

3∏
j=1

(a2
j + λ)2 = 0 (24)

The roots of f(λ) will provide 6 Lagrange Multipliers. Then all that is needed is to use equation 23 to find
the point corresponding to each real λ, and then select the optimal one. However, the next proposition will
prove that this is not needed.
Proposition 1. Given roots {λ1, ..., λ6} of f(λ). The λi that corresponds to the maximum distance on the
ellipsoid from a point will be such that λi ∈ R and λi ≤ λj for all j = 1, 2, ..., 6

Proof. First recognize that the positive λ’s represent local minimums for the Lagrange multiplier problem
and should be ignored. A non-rigorous argument is that Λx is the outward normal of the ellipsoid, so if
λ > 0, then x − c and Λx are pointing anti-parallel, which means that λ corresponds to a point on the
ellipsoid closest to the center of the sphere.

Let xi be the point given by Lagrange Multiplier λi < 0. Then we have

||xi − c|| = λi||Λxi|| = −λi

√√√√ 3∑
j=1

(
xij
a2
j

)2 (25)

= −λi

√√√√ 3∑
j=1

c2j
(a2
j + λi)2

(26)

Next observe that |xij | ≤ aj , and so

|xi| = |
cja

2
j

a2
j + λi

| ≤ aj (27)

Rearranging, we can get |a2
j + λi| ≥ |ci|ai ≥ 0 and so if λi ≤ λk we have:

||xi − c|| = −λi

√√√√ 3∑
j=1

c2j
(a2
j + λi)2

≥ −λk

√√√√ 3∑
j=1

c2j
(a2
j + λk)2

= ||xk − c|| (28)

There are subtletes that can occur in very infrequent cases when there is no unique point on the ellipsoid
furthest from the sphere’s center. There can be two points, a circle of points, or a sphere of points that solve
the Lagrange multiplier problem. In these cases, like when a ellipsoid perfectly hits the bottom of the sphere,
there are two points of contact which are equivilent to a point of contact at the center of mass incurring no
torque. These cases, while infrequent, are not too difficult to fix as is shown in the appendix.

5.4 Jacobians of the distance functions

For the LCP, we must, for each pair of bodies, not only find the distance between them, Φ, but also
determine how this distance changes as each body is shifted and rotated about each axes. That is to say,
we must determine ∂Φ

∂ri
and ∂Φ

∂θi
, where ri is the ith axes, and θi is a rotation about the ith axes. Suppose

we have two ellipsoids characterized by solutions to the two equations (x − r1)tA1(x − r1) − 1 = 0 and
(y − r2)tA2(y − r2)− 1 = 0. Where A1, A2 ∈ R3×3. Now suppose we have determined the closest points on
the two ellipsoids, k1, k2. Then we have solved the Lagrange multiplier problem:

k1 − k2 + λA1(k1 − r1) = 0 (29)

k2 − k1 + µA2(k2 − r2) = 0 (30)

(k1 − r1)tA1(k1 − r1)− 1 = 0 (31)

(k2 − r2)tA2(k2 − r2)− 1 = 0 (32)

Through substitution of the Lagrange multipliers λ and µ, we can reduce this to the following:

k1 − k2 + (k1 − r1)t(k2 − k1)A1(k1 − r1) = 0 (33)

k2 − k1 + (k2 − r2)t(k1 − k2)A2(k2 − r2) = 0 (34)

Now the question is given shifts and rotations (changes to r and A respectively), how do k1 and k2 change?
Let each variable be equal to itself plus an increment, ie let k1 = k1 + ∆k1. Then expanding the above
equation, getting rid of second order approximations, we can get A(∆k1 ∆k2)t = b, where

A =

(
I3 +A1c1(ht − ct1) + ct1hA1 −I3 +A1c1c

t
1

−I3 +A2c2c
t
2 I3 +A2c2(−ht − ct2)− ct2hA2

)
(35)

b =

(
A1(ct1hI3 + c1h

t)∆r1 −∆A1c1c
t
1h

−A2(ct2hI3 + c2h
t)∆r2 + ∆A2c2c

t
2h

)
(36)

Where In is an n by n unit matrix, c1 = k1 − r1, c2 = k2 − r2, and h = k2 − k1, ĥ = h
||h|| , and ∆ri is

the displacement of the center of the ith ellipsoid’s center. ∆Ai (first order approximation of the ellipsoid’s
rotation) is derived as:

∆Ai = Ai,new −Ai (37)

∆Ai = RnewΛRtnew −RΛRt (38)

Rnew = RθR ∼= (I3 + Cθ)R = R+ CθR (39)

∆Ai = AiC
t
θ + CθAi (40)

Where Cθ ∈ R3×3 is such that Cθ ·v = θ×v. By solving A(∆k1 ∆k2)t = b, we can get the change in distance
through the approximation

∆Φ = ‖k1 + ∆k1 − k2 −∆k2‖ ∼=
(k1 − k2)t(∆k1 −∆k2)

‖k1 − k2‖
= ĥt(∆k1 −∆k2) (41)

Letting M1,M2 ∈ R6×3 be such that A−1 = (M1 M2)t, we have:

∆Φ = ĥt(M1 −M2)b (42)

After preforming extensive numerical tests, it has been found that this method is equivalent to:

∆Φ = (
∂Φ

∂q1
)t∆q1 + (

∂Φ

∂q2
)t∆q2 (43)

with,
∂Φ

∂q1
=

(
−ĥ

ĥ× c1

)
,
∂Φ

∂q2
=

(
ĥ

−ĥ× c2

)
(44)

An analytic proof of this fact, which would involve symbolically inverting A, has not been found, but would
probably involve some linear algebra tricks. It may be possible to determine the error in this approximation
by keeping track of the second and higher order terms that were neglected. It is important to note that
errors in calculating the jacobian of the distance function are what lead to penetrating bodies. An error in
the jacobian of the distance function could lead to a significant error in the guessed distance between bodies
in the next time step. If the guessed distance is larger than the actual, then the next time step could end
up with intersecting bodies.
Now that the method of computing the distance Jacobians is established, it is worthwhile to state the
following:
Proposition 2. ∂Φ

∂qi
= Ni

Proof. Again letting −h be the unit vector from the point of contact on the second ellipsoid (k2) to the point
of contact on the first ellipsoid (k1). If r is the center of the first ellipsoid, then let c1 = k1 − r1. And so the

component of the contact force that applies translational force to the center of mass will be −ĥ, while the
component that applies torque will be ĥ× c1. And so we have

N1 =

(
−ĥ

ĥ× c1

)
=
∂Φ

∂q1
(45)

6 Adding Friction

Friction can be modeled by approximating the Columb friction cone as a polyhedral with 2l edges [2]. This
gives us the following equations:

0 ≤ Φn+1 ⊥ λ ≥ 0 (46)

0 ≤ γe+Dtun+1
t ⊥ β ≥ 0 (47)

0 ≤ µλ− etβ ⊥ γ ≥ 0 (48)

Φ and λ are as before. γ ∈ R is to be solved. e = (1, 1, ..., 1)t ∈ R2l. D ∈ R3×2l is a collection of evenly
spaced out unit vectors lying on the plane tangent to the bodies points of contact. If the point of contact is
at the origin, and the tangent plane of contact is the x-y plane, and we are approximating the friction cone
with 4 sides, then an acceptable D would be1 0 −1 0

0 1 0 −1
0 0 0 0

 (49)

ut is the relative translational velocity of one body with respect to the other. β ∈ R2l is the coefficients of
the friction force, making the actual friction force Ffriction = Dβ. µ ∈ R is the coefficient of friction.
To formulate this as a matrix for the case of only two ellipsoids, the same approach is followed, except now
we have

Fcontact = (∂iΦ)tλ+N D β (50)

With

N =

(
I3
03

)
(51)

∂iΦ = (
∂Φ

∂qi
) (52)

By multiplying by N , we are ensuring that the friction force only imposes translational force, and no torques,
as that would be involve implementing rolling friction.
Furthermore, if bodies index by a and b are in contact, we have

un+1
t = N t(un+1

a − un+1
b) (53)

Again multiplying by N t because we only care about translational velocity and not rotatational. We can
then write this LCP in the form 0 ≤ Ax+ b ⊥ x ≥ 0, with

A =

(∂1Φ)tM1(∂1Φ) + (∂2Φ)tM2(∂2Φ) ((∂1Φ)tM1 − (∂2Φ)tM2)ND 0
DtN t(M1(∂1Φ)−M2(∂2Φ)) DtN t(M1 + M2)ND e

µ −et 0

 (54)

x =

λβ
γ

 , b =

(1/dt)(Φn − ε) + (∂1Φ)tV1 + (∂2Φ)tV2

DtN tV n

0

 (55)

Again, we can generalize this for an arbitrary number of collisions by solving 0 ≤ Ax+b ⊥ x ≥ 0, with:

A =

(
(∂Φ D)tM (∂Φ D) A1

A2 0

)
(56)

If we are approximating the cone with 2l edges, have n bodies, and have m collisions. Given a collision
indexed by i involving bodies a and b, then
D ∈ R2lm×6n where:

D =

... collisioni ...

...
bodya ... N ·Di ...
...

bodyb ... −N ·Di ...
...

 (57)

(∂Φ D) ∈ R6n×(m+2lm) is the concatenatination of the previously defined matrices ∂Φ and D

A1 =

... collisioni ...

...
collisioni ... e ...

...

 (58)

A2 =

... collisioni ... n+collisioni ...

...

collisioni ... µi ...
...

n+collisioni ... −et
... ...

 (59)

x = (λ1 ... λn β
t
1 ... β

t
n ... γ1 ... γn)t and

b =

(1/dt)(Φn + ε) + (∂Φ)tV
D tV

0

 (60)

6.1 Friction Problems

There was a bug that was never fully fixed. The simplest case of this bug was when throwing a sphere
tangentially to a plane with gravity and friction. In certain cases the sphere would fall through the plane.
Upon inspection this was due to an insufficient contact force from the boundary plane, which was due to the
LCP solver not solving the LCP. The Newton Minimal Map solver was failing to converge on a solution and
would return an insufficient answer. There are at least three reasons for this, either the LCP was incorrectly
formulated leading to an unsolvable LCP, the LCP was formulated incorrectly in the code, or the the Newton
Minimal Map solver has a bug. We used a different LCP solver which used a pivoting algorithm which worked
perfectly for all friction simulations. The problem is that the pivoting algorithm scales cubically with the
number of collision pairs while the Newton Minimal Map scales quadratically.

7 Results

7.1 Self Convergence

First we determine how our simulations converge with respect to shrinking time step size, dt. To do this
we ran the same simulation for step sizes dt, dt/2, dt/4, and dt/8. Then we looked at different values of
an arbitrary body: position, orientation, translational and angular velocity. We then plotted the difference
between succesive simulations. For the simple simulations, such as dropping a sphere on a plane, the

converegence was non-existent as the numerical method could determine the exact solution with a large time
step. The first test is taking three different ellipsoids with a plane boundary under gravity with low initial
velocities. Here is a snapshot of an early frame of the simulation.

We then got the following results:

The next test is dropping two ellipsoids within a spherical boundary with gravity. Here is a snapshot of an
early frame:

Along with tests:

Then the same simulation is run with sliding friction using an arbitrary coefficent of friction .4, and approx-
imating the friction cone with 4 edges. We then get the following results.

Convergence, while present, is hard to see. By numerically approximating our diffrential equations of mo-
tion with a backwards Euler scheme, we would expect linear convergence. However, every contact is a
discontinuity, and as the number of contacts increase, convergence is harder to see.

7.2 Comparing Values of dt

We ran tests where we compared two simulations with the same initial position and velocity conditions, but
with dt = 0.1 and dt/2 respectively, and plotted the average norm of the difference between the objects in

the two simulations at each time step. We shall call an object Oi = (vi, pi) where vi and pi represent the
velocity and position at a given time step, and where i = 1 if it corresponds to the simulation using dt = 0.1
or i = 2 if it corresponds to the simulation using dt/2. We found the following results:

7.2.1 Ellipsoid Falling onto Plane

This is the example where an ellipsoid falls onto a plane. The quaternion, translational velocity and the
center position converge fairly well, as we can see, but the rotational velocity seems to have trouble at points
of contact.

7.2.2 Ellipsoids Arranged in a Cube

This is the example where ellipsoids arranged in a cube configuration fall onto a plane. The quaternion
appears to be very consistent in error. The translational velocity’s error is fairly low, with errors occurring
at contacts. The rotational velocity and center positions have trouble converging, however.

7.3 Scaling

We ran a test where we arranged ellipsoids on a plane boundary (floor) along a line and measured the
average amount of time spent per iteration. Friction was turned on. The amount of time was measured via
the computer’s internal clock, a 2015 Macbook Air on the lowest specs. The graph we found is as follows:

Here is a similar test showing more information with iterations of the minimal map newton solver for the
LCP and GMRES function within. Here is a snapshot of 30 ellipsoids falling onto a plane boundary in a
cubic lattice with random initial velocities.

And some results:

We observe a roughly linear relationship between the log (base 10) of the average time per iteration and the
number of ellipsoids.

8 Conclusion

We have successfully built an algorithm to handle rigid body collisions of ellipsoids with sliding friction. Our
algorithm is fast as it is posed as a linear complementarity problem as opposed to a nonlinear scheme. Ho-
wever the trade off is inaccuracies and danger of intersecting bodies if the step size is too large. Intersections
cannot yet be predicted, but they can be avoided by running the simulation again with either a smaller time
step and/or a larger body tolerance. Further work into the analysis of the jacobian approximation could be
used to determine the precise step size to ensure non-penetration. The convergence results suggest linear
convergence of important body information with respect to step size. More tests and tweaks need to be run
to ensure linear convergence. Lastly, the issue with the LCP solver failing with sliding friction has yet to be
resolved.

9 Appendix

9.1 Non Unique Point to Sphere

When determining the closest distance from the boundary of an ellipsoid to a sphere that encloses it, there
are issues with non-uniqueness. In these cases all that must be returned is the closest distance from the
ellipsoid to the sphere. Using the same notation as before, given a lagrange multiplier λ, we have

xi =
cia

2
i

a2
i + λ

(61)

This will have problems if λ = −a2
i . Let R ∈ N3 be the indicies of all axes where this problem arises, ie

i ∈ R if and only if λ = −a2
i .

If R = (1, 1, 1), then the ellipsoid is a sphere centered at the origin so the distance is trivial (and probably
not in danger of contact).
If R has one zero, without loss of generality (by reordering), we can assume R = (1, 1, 0). Then we have x3

by equation 61. We have a circle of infinite choices for x1, x2, so we can just let

x1 = 0, x2 = a1

√
1− x2

3/a
2
3 (62)

And from this calculate the distance.
Finally for R = (1, 0, 0) we have x2, x3, so we can just let

x1 = a1

√
1− x2

2/a
2
2 − x2

3/a
2
3 (63)

And then calculate the distance.

References

[1] Lin, Anhua, and Shih-Ping Han. On the Distance between Two Ellipsoids. SIAM Journal on Optimization
13.1 (2002): 298-308. Web.

[2] Mihai Anitescu and F.A. Potra. Formulating dynamic multi-rigid-body contact problems with friction
as solvable Linear Complementarity Problems Nonlinear Dynamics , 14 , 231–247, 1997. DOI:
10.1023/A:1008292328909

[3] Steven Delong Brownian dynamics of confined rigid bodies The Journal of Chemical Physics 143, 144107
(2015)

	Introduction
	Outline of Algorithm
	Preliminary Notations
	Coordinates
	Quaternions
	Ellipsoids

	The LCP
	Distance functions and their Jacobians
	Ellipsoid - Ellipsoid Distances
	Ellipsoid - Plane Distance
	Ellipsoid - Sphere Distances
	Jacobians of the distance functions

	Adding Friction
	Friction Problems

	Results
	Self Convergence
	Comparing Values of dt
	Ellipsoid Falling onto Plane
	Ellipsoids Arranged in a Cube

	Scaling

	Conclusion
	Appendix
	Non Unique Point to Sphere

