
Algebraic Topology QR Exam – January 2022

1. (a) State the definition of a CW complex and its topology (the weak topology).

(b) Define the 2-sphere S2, up to homeomorphism, to be the set

S2 =
{

(x1, x2, x3) ∈ R3
∣∣ x21 + x22 + x23 = 1

}
topologized as a subspace of Euclidean 3-space. Give a rigorous proof that the 2-sphere admits a
CW complex structure, verifying that its topology agrees with the weak topology on your chosen
CW complex. [You may take for granted standard results from point-set topology, and standard
results about continuity of maps between subspaces of Euclidean space. For the remainder of the
exam you may take for granted standard results about CW complex structures on common spaces.]

2. Let G be a graph, that is, a 1-dimensional CW complex. Let S2 denote the 2-sphere. For each of the
following statements, either prove the statement, or give (with justification) a counterexample.

(a) Every continuous map G→ S2 is nullhomotopic.

(b) Every continuous map S2 → G is nullhomotopic.

3. For n ∈ N, let Cn be the metric circle of radius 1
n in R2 with its north pole at the origin (0, 0). Let C

be the union
⋃
n Cn, topologized as a subspace of Euclidean 2-space. The space C has been called the

infinite earring, the Hawaiian earring, and the shrinking wedge of circles.

The space C is a standard example of a space that is not semi-locally simply connected. Prove that C
does not have a universal cover by verifying that it is not semi-locally simply connected, and proving
that every space with a universal cover is semi-locally simply connected.

4. Suppose that a certain space X decomposes as the union of three open subsets, X = U1 ∪ U2 ∪ U3,
satisfying the following properties.

• The open sets U1, U2, and U3 are contractible.

• The pairwise intersections U1 ∩ U2, U1 ∩ U3, and U2 ∩ U3 are contractible.

• The triple intersection U1 ∩ U2 ∩ U3 is empty.

Prove that X has the same homology as the circle S1.

5. A space Y is constructed by gluing together a torus, a Klein bottle, and a cylinder along the edges
labelled a below, i.e., Y is constructed from three squares using the edge identifications shown.

(a) Calculate a presentation for the fundamental group of Y .

(b) Calculate the homology of Y .
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Solutions

1. (a) A CW complex is a (filtered) topological space X defined as follows. Its 0-skeleton X0 is a discrete
set of points. We inductively define the n-skeleton Xn by gluing closed n-disks to the (n − 1)-
skeleton along their boundaries. Specifically, to construct Xn we first take the disjoint union of
the (n − 1)-skeleton Xn−1 and a collection of disjoint n-disks {Dn

α}α. Associated to each n-disk
we define an attaching map, a continuous map φα : ∂Dn

α → Xn−1. We then define the n-skeleton
Xn as the quotient space

Xn =

(
Xn−1

⊔
α

Dn
α

)/
x ∼ φα(x) for all α and x ∈ ∂Dn

α,

with the quotient topology.

We let X =
⋃
n≥0X

n. We endow X with the weak topology : a subset U ⊆ X is open if and only
if U ∩Xn is open for every n. We note that, if X is finite dimensional (i.e. X equals its d-skeleton
Xd for some d), then the weak topology agrees with the quotient topology defined on Xd above.

(b) There are many choices of CW complex structure on S2; in this sample solution we will examine
the CW complex with one 0-disk x and one 2-disk D. The attaching map φ : ∂D → x is necessarily
the constant map, and the CW complex X = X2 is defined as the quotient of D t x obtained by
gluing the boundary ∂D to x,

X = X2 = (x tD) / y ∼ x for all y ∈ ∂D
= (x tD) / (x t ∂D).

We must prove that X is homeomorphic to S2. First we define a map F : x tD → S2. Identify
D with the unit disk in R2, described in polar coordinates (r, φ). To simplify the formula we
parameterize S2 ⊆ R3 using spherical coordinates (r, θ, φ), where r ≥ 0 is the vector’s length,
θ ∈ [0, π] its angle to the positive z-axis, and φ ∈ [0, 2π) the angle from the positive x-axis to its
projection in the xy-plane. The sphere S2 is the level set r = 1. Define F by

F : x tD −→ S2

x 7−→ (1, π, 0) [the south pole of S2]

(r, φ) 7−→ (1, rπ, φ)

By construction, the map F surjects onto S2. The map F is injective except at the points {x} ∪
{(r, φ) | r = 1} = x t ∂D, which all map to the south pole of S2. Thus by the universal
property of the quotient topology, the map F factors through a continuous map f from the quotient
X = (x tD) / (x t ∂D),

x tD X = (x tD)/(x t ∂D)

S2

q

F f
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By construction, the map f : X → S2 is bijective. The quotient space X is the continuous image
q(x t D) of the compact space x t D and is therefore compact. Every continuous bijective map
from a compact space to a Hausdorff space is a homeomorphism. Thus f is a homeomorphism,
and we have constructed a CW complex structure on S2 as desired.

2. (a) The statement is true.

Let f : G→ S2 be a continuous map. Recall that the 2-sphere S2 admits a CW complex structure
with one 0-cell and one 2-cell. The cellular approximation theorem states,

Theorem. Every continuous map X → Y of CW complexes is homotopic to a cellular
map.

Thus f is homotopic to a continuous function that maps the 1-skeleton of G (that is, all of G) to
the 1-skeleton of S2 (that is, a single point). In other words, f is nullhomoptic.

(b) The statement is true.

Let g : S2 → G be a continuous map. Its image g(S2) must be connected, so we can just consider
the connected component of G containing g(S2), and WLOG assume G is connected.

The graph G is a connected CW complex, therefore it is path-connected, locally path-connected,
and semi-locally simply connected. Thus G has a universal cover p : G̃ → G. Since G is a 1-
dimensional CW complex, so are its covers. Its universal cover G̃ is a simply connected graph, so
G̃ is a tree, and therefore contractible.

The sphere S2 has trivial fundamental group, so g∗(π1(S2)) = 0 ⊆ p∗(π1(G̃)). Then by the lifting

criterion for covering spaces, the map g factors through a map g̃ : S2 → G̃,

G̃

S2 G

p
g̃

g

Since G̃ is contractible, the map g̃ is nullhomotopic via some homotopy ht. But then p ◦ ht is a
nullhomotopy of the map g.

3. Let X be a path-connected, locally path-connected topological space. Recall that the universal cover
p : X̃ → X of X is, if it exists, a covering map such that the covering space X̃ is simply connected. By
the lifting criterion and the unique lifting property for covering spaces, the universal cover (if it exists)
is unique up to isomorphism.

Consider the following definition.

Definition. Let X be a topological space. Then X is semi-locally simply connected if every
point x ∈ X has a neighbourhood U with the property that every loop in U is nullhomotopic
in X. Equivalently, the map π1(U, x) → π1(X,x) induced by the inclusion U ↪→ X has
trivial image.

We first prove that the space C is not semi-locally simply connected. Let x = (0, 0) be the origin. Fix a
neighbourhood U of x in C. The neighbourhood U must contain the circle CN for some N sufficiently
large. Consider the continuous retraction map φ : C → CN that is the identity on CN and maps the
circle Cn to the point x for all n 6= N . Then the composition

CN ↪→ U ↪→ C
φ−→ CN
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is the identity map on CN . Therefore the composition

Z ∼= π1(CN , x)→ π1(U, x)→ π1(C, x)
φ∗−→ π1(CN , x) ∼= Z

is the identity map, and we deduce that the map π1(U, x)→ π1(C, x) is nonzero, as desired.

Next we will argue that a space X with a universal cover must be semi-locally simply connected.
Suppose p : X̃ → X is the universal cover. Choose a point x ∈ X, and choose a preimage x̃ ∈ p−1(x).

By definition of a covering space, there exists a neighbourhood U of x and lift Ũ such that Ũ is a
neighbourhood of x̃ and p|Ũ : Ũ → U is a homeomorphism.

Let γ : S1 → U be any loop in U ; we will show γ is nullhomotopic in X. The map (p|Ũ )−1 ◦ γ is a lift

of γ to Ũ . Since X̃ is simply connected by assumption, there is a nullhomotopy Ft from (p|Ũ )−1 ◦ γ to

the constant map at some point c̃ ∈ X̃. But then p ◦ Ft is a homotopy in X from p ◦ (p|Ũ )−1 ◦ γ = γ
to the constant map at p(c̃) ∈ X. Thus γ is nullhomotopic in X and it follows that X is semi-locally
simply connected.

We conclude that the space C does not have a universal cover.

4. We will prove this result using three applications of the Mayer–Vietoris long exact sequence.

We have a choice between using the version of the Mayer–Vietoris sequence for reduced or un-reduced
homology. In this solution we will work with reduced homology, noting that (by definition of reduced
homology) the empty space has reduced homology groups

H̃i(∅) =

{
Z, i = −1
0, i 6= −1.

Since the reduced homology groups determine the un-reduced homology groups up to isomorphism (by
adding a direct factor of Z in degree 0), to solve the problem it suffices show that

H̃i(X) ∼= H̃i(S
1) ∼=

{
Z, i = 1
0, i 6= 1.

Recall that, given open subsets A and B in a topological space, the Mayer–Vietoris sequence is the
long exact sequence on homology groups

· · · H̃n(A ∩B) H̃n(A)⊕Hn(B) H̃n(A ∪B) H̃n−1(A ∩B) · · ·δ

Claim 1. H̃i(U1 ∪ U2) = 0 for all i.

We first consider the Mayer–Vietoris long exact sequence in the case

A = U1 ' ∗ and B = U2 ' ∗.

By hypothesis, A ∩B = U1 ∩ U2 ' ∗. Thus, for all n, we have an exact sequence

· · · H̃n(A)⊕ H̃n(B) H̃n(A ∪B) H̃n−1(A ∩B) · · ·

0 H̃n(U1 ∪ U2) 0

δ

and we deduce that U1 ∪ U2 is acyclic; H̃n(U1 ∪ U2) = 0 for all n as claimed.

Claim 2. H̃i((U1 ∪ U2) ∩ U3) ∼=
{

Z, i = 0
0, i 6= 0.
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We next consider the Mayer–Vietoris long exact sequence in the case A = U1 ∩ U3 ' ∗ and B =
U2 ∩ U3 ' ∗. Then

A ∩B = U1 ∩ U2 ∩ U3 = ∅, A ∪B = (U1 ∩ U3) ∪ (U2 ∩ U3) = (U1 ∪ U2) ∩ U3

Thus

Hi(A) = 0 for all i

Hi(B) = 0 for all i

Hi(A ∩B) = 0 for all i 6= −1

H−1(A ∩B) = Z

and the Mayer–Vietoris sequence is, for n ≥ 1,

· · · H̃n(A)⊕ H̃n(B) H̃n(A ∪B) H̃n−1(A ∩B) · · ·

0 H̃n((U1 ∪ U2) ∩ U3) 0

δ

and for n = 0,

· · · H̃0(A)⊕ H̃0(B) H̃0(A ∪B) H̃−1(A ∩B) H̃−1(A)⊕ H̃−1(B) · · ·

0 H̃0((U1 ∪ U2) ∩ U3) Z 0

δ

We deduce H̃i((U1 ∪ U2) ∩ U3) ∼=
{

Z, i = 0
0, i 6= 0.

Claim 3. H̃i(X) = H̃i(U1 ∪ U2 ∪ U3) ∼=
{

Z, i = 1
0, i 6= 1.

Finally we apply the Mayer–Vietoris sequence to the subsets A = U1 ∪ U2 and B = U3. The space
B is acyclic by assumption, and A is acyclic by Claim 1. We computed the reduced homology of the
intersection A ∩B = (U1 ∪ U2) ∩ U3 in Claim 2.

For n ≥ 2, we have

· · · H̃n(A)⊕ H̃n(B) H̃n(A ∪B) H̃n−1(A ∩B) · · ·

0 H̃n(X) 0

δ

Thus H̃n(X) for all n ≥ 2. For n = 1, 0 we have

· · · H̃1(A)⊕ H̃1(B) H̃1(A ∪B) H̃0(A ∩B) H̃0(A)⊕ H̃0(B)

0 H̃1(X) Z 0

H̃0(A ∪B) H̃−1(A ∩B) · · ·

H̃0(X) 0

δ

δ
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Thus H̃1(X) ∼= Z and H̃0(X) = 0. This concludes Claim 3 and the proof.

5. When we trace out the orbits of the corner points under the edge identifications, we see that there
are two vertices (labelled x and y below). Thus Y is a CW complex with two 0-cells x, y, five 1-cells
a, b, c, d, e, and three 2-cells which we label B,C,D below.

(a) The 1-skeleton Y 1 of Y is shown below.

The edge d is the unique choice of maximal tree. By abuse of notation, we also write a (respectively,
b, c, etc) to denote the element of π1(Y, x) represented by the inclusion of the (directed) edge a.
Then π1(Y 1, x) is freely generated by the four loops a, b, c, e′, where e′ = ded−1, and it follows that
the loops a, b, c, e′ generate π1(Y, x).

Each 2-cell determines to a relator in π1(Y, x). Each 2-disk is glued down by its boundary along
a word in the letters a, b, c, d, e; we must re-express these words (up to equivalence as elements in
π1(Y, x)) as words in the generators a, b, c, e′ = ded−1. The cell B is glued along the word aba−1b−1.
The cell C is glued along the word aca−1c. The cell D is glued along the word ded−1a = e′a. Thus

π1(Y ) ∼= 〈 a, b, c, e′ | aba−1b−1, aca−1c, e′a 〉.

Since the last relation states that e′ = a−1, we can (optionally) simplify this presentation,

π1(Y ) ∼= 〈 a, b, c | aba−1b−1, aca−1c 〉.

(b) Again view Y as a CW complex with two 0-cells x, y, five 1-cells a, b, c, d, e, and three 2-cells
B,C,D. Its cellular chain complex is:
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0 C2(Y ) C1(Y ) C0(Y ) 0

A a+ b− a− b = 0

B a+ c− a+ c = 2c

C d+ e− d+ a = e+ a

a x− x = 0

b x− x = 0

c x− x = 0

d y − x

e y − y = 0

∂2 ∂1

To compute the kernel of ∂2, suppose for some m,n, k ∈ Z,

∂2(mA+ nB + kC) = 0

m∂2(A) + n∂2(B) + k ∂2(C) = 0

m0 + n(2c) + k(e+ a) = 0

2nc+ ke+ ka = 0

Since c, e, a are linearly independent in C1(Y ) this implies n = k = 0. Thus ker(∂2) = 〈A〉.
Similarly the kernel of ∂1 is 〈a, b, c, e〉. Thus,

H0(Y ) =
C0(Y )

im(∂1)
=

Z{x, y}
〈x− y〉

∼= Z

H1(Y ) =
ker(∂1)

im(∂2)
=

Z{a, b, c, e}
〈2c, e+ a〉

∼=
Z{a, b, c}
〈2c〉

∼= Z2 ⊕ Z/2Z

H2(Y ) = ker(∂2) = 〈A〉 ∼= Z

We can verify the calculation of H0(Y ) and H1(Y ) using part (a). By its construction Y is
a connected CW complex, hence path-connected, so necessarily H0(Y ) ∼= Z. We can calculate
H1(Y ) by abelianizing the presentation for π1(Y ),

π1(Y ) ∼= 〈 a, b, c | aba−1b−1, aca−1c 〉.

If the generators a, b, c commute, then the relator aba−1b−1 vanishes and the relator aca−1c sim-
plifies to c2. Thus (switching from multiplicative to additive notation) again we see

H1(Y ) ∼=
Z{a, b, c}
〈2c〉

∼= Z2 ⊕ Z/2Z.
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