Differential Topology QR Exam - With Solutions
 Monday, January 8, 2024

All manifolds are assumed to be smooth. $\Omega^{k}(M)$ denotes the space of smooth k forms on the manifold M. All items will be graded independently of each other.

Problem 1. Let $f: X \rightarrow M$ be an injective immersion, where X and M are manifolds without boundary.
(a) Give an example, with proofs, where f is not an embedding.
(b) Show that if X is compact f must be an embedding.

Solution: (a) Take X an open interval, $M=\mathbb{R}^{2}$, and f a parametrization of of a lemniscate (figure eight-see example 4.19 in Lee). $f(X)$ is compact, but X is not so f is not a homeomorphism onto its image. (b) If $F \subset X$ is closed then it is compact. Since f is continuous $f(X)$ is compact and therefore closed in M and therefore in $f(X)$. So the pull-back of closed sets under inverse map $f(X) \rightarrow X$ is closed, and therefore the inverse map is continous.

Problem 2. Let M be an n-dimensional manifold. The orientation covering of M is defined as

$$
\widetilde{M}=\left\{(p, \mathfrak{o}) \mid p \in M \text { and } \mathfrak{o} \text { is an orientation of } T_{p} M\right\}
$$

\widetilde{M} has a C^{∞} manifold structure such that the natural projection $\pi: \widetilde{M} \rightarrow M$ is a smooth covering map (you can freely use this without proof).
(a) Show that \widetilde{M} has a natural orientation.
(b) Let ω be a compactly-supported n-form on M. Show that $\int_{\widetilde{M}} \pi^{*} \omega=0$.

Solution: (a) Note that the natural projection induces $T_{(p, \mathrm{o})} \widetilde{M} \cong T_{p} M$. Define a point-wise orientation on \widetilde{M} by orienting $T_{(p, \mathfrak{o})} \widetilde{M}$ by \mathfrak{o}. To prove that this is a continous orientation, pick (p, \mathfrak{o}) and a connected chart (U, ϕ) of M where $p \in U$ and the chart orientation agrees with \mathfrak{o} at p. Note that $\pi^{-1}(U)=U_{+} \coprod U_{-}$where $(p, \mathfrak{o}) \in U_{+}\left(\right.$and $\left.(p,-\mathfrak{o}) \in U_{-}\right)$. Then $\left.\phi \circ \pi\right|_{U_{+}}: U_{+} \rightarrow \mathbb{R}^{n}$ is a positive chart in the point-wise orientation previously defined.
(b) Using a partition of unit WOLOG assume that β is supported in the domain U of a connected chart in M. Keep the notation $\pi^{-1}(U)=U_{+} \coprod U_{-}$of (a), where $(p, \mathfrak{o}) \in U_{+} \Leftrightarrow(p,-\mathfrak{o}) \in U_{-}$. Then $\int_{\pi^{-1}(U)} \pi^{*} \beta=\int_{U_{+}} \pi^{*} \beta+\int_{U_{-}} \pi^{*} \beta$. Now the obvious diffeomorphism $f: U_{+} \rightarrow U_{-}$is orientation-reversing, and $f^{*} \pi^{*} \beta=\pi^{*} \beta$ since $\pi \circ f=\pi$. Therefore

$$
\int_{U_{+}} \pi^{*} \beta=\int_{U_{+}} f^{*} \pi^{*} \beta=-\int_{U_{-}} \pi^{*} \beta
$$

which implies $\int_{\pi^{-1}(U)} \pi^{*} \beta=0$.

Problem 3. Let $f: X \rightarrow M$ and $g: Y \rightarrow M$ be smooth maps between manifolds, where f is a submersion. Show that

$$
W:=\{(x, y) \in X \times Y \mid f(x)=g(y)\}
$$

is a submanifold of $X \times Y$. Hint: Consider $F:=f \times g: X \times Y \rightarrow M \times M$.
Solution: The strategy is to show that $F=f \times g$ intersects the diagonal $\Delta \subset M \times M$ transversely (observe that $W=F^{-1}(\Delta)$). Let $(x, y) \in X \times Y$ be such that $F(x, y) \in \Delta$, i.e. $f(x)=m=g(y)$. Let $a, b \in T_{m} M ;(a, b)$ is a generic vector in $T_{(m, m)} M \times M$. Note that $(b, b) \in T_{(m, m)} \Delta$. Since f is a submersion, $\exists u \in T_{x} M$ such that $d f_{x}(u)=a-b$, and therefore

$$
d F_{(x, y)}(u, 0)+(b, b)=\left(d f_{x}(u)+b, b\right)=(a, b) .
$$

This shows im $\left(d F_{(x, y)}\right)+T_{(m, m)} \Delta=T_{(m, m)} M \times M$.
Problem 4. Consider $\phi_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
\phi_{t}(x, y, z)=\left(e^{t} x, \cos (t) y-\sin (t) z, \sin (t) y+\cos (t) z\right), \quad t \in \mathbb{R} .
$$

(a) Show that ϕ is a flow, and find the vector field V that generates it.
(b) Use the definition of the Lie derivative of a form to compute $\mathcal{L}_{V}(d x \wedge d y)$.
(c) Quote Cartan's formula, and use it to verify your answer to (b).

Solution: (a) ϕ_{t} induces the standard rotation by t radians in the $y-z$ plane, so it is easy to check that $\phi_{t+s}=\phi_{t} \circ \phi_{s}$. Moreover

$$
V_{(x, y, z)}=\left.\frac{d}{d t} \phi_{t}(x, y, z)\right|_{t=0}=\langle x,-z, y\rangle .
$$

(b) $\mathcal{L}_{V}(d x \wedge d y)=d /\left.d t \phi_{t}^{*}(d x \wedge d y)\right|_{t=0}$. Computing:

$$
\phi_{t}^{*}(d x \wedge d y)=e^{t} d x \wedge(\cos (t) d y-\sin (t) d z)
$$

and so $\mathcal{L}_{V}(d x \wedge d y)=d x \wedge d y-d x \wedge d z$. (c) Cartan's formula: $\mathcal{L}_{V} \alpha=\iota_{V} d \alpha+d \iota_{V} \alpha$. Here $\alpha=d x \wedge d y$ is closed, so the formula reduces to

$$
\mathcal{L}_{V} \alpha=d \iota_{V} \alpha=d(x d y+z d x)=d x \wedge d y+d z \wedge d x
$$

which agrees with what was found in (b).
Problem 5. Let G be a connected Lie group with Lie algebra \mathfrak{g} that we identify with $T_{I} G$. Let Ω_{G}^{k} denote the space of all left-invariant forms on G of degree k.
(a) Establish a natural isomorphism $\Omega_{G}^{k} \cong \bigwedge^{k} \mathfrak{g}^{*}$.
(b) Show that the exterior differential maps Ω_{G}^{k} into Ω_{G}^{k+1}.
(c) Combining (a) and (b) with $k=0,1$, we obtain maps

$$
d_{0}: \wedge^{0} \mathfrak{g}^{*} \cong \mathbb{R} \rightarrow \mathfrak{g}^{*} \quad \text { and } \quad d_{1}: \mathfrak{g}^{*} \rightarrow \wedge^{2} \mathfrak{g}^{*} .
$$

Show that $d_{0}=0$ and compute d_{1}. Hint: For d_{1}, use a formula for $d \alpha(V, W)$ where α is any one-form and V, W are vector fields.

Solution: (a) In one direction $\Omega_{G}^{k} \rightarrow \bigwedge^{k} \mathfrak{g}^{*}$ is just evaluation at the identity I. The inverse is obtained by left-invariance,

$$
\forall \alpha \in \Omega_{G}^{k}, g \in G \quad \alpha_{g}=d\left(L_{g^{-1}}\right)_{g}^{*} \alpha_{I}
$$

where $L_{g}: G \rightarrow G$ is left translation by g. (b) This follows because d commutes with the operation of pull-back by any smooth map, so $\forall \alpha \in \Omega_{G}^{k} L_{g}^{*} d \alpha=d L_{g}^{*} \alpha=d \alpha$ which shows that $d \alpha$ is left-invariant. (c) $k=0$: An invariant function is constant, so its differential is zero. $k=1$: Use

$$
d \alpha(V, W)=V \alpha(W)-W \alpha(V)-\alpha([V, W])
$$

We want to compute $d \alpha_{I}$ for a given $\alpha \in \Omega_{G}^{k}$. The idea is to take V, W to be left-invariant fields, in which case the first two terms vanish (because $\alpha(V), \alpha(W)$ are constant functions), and the commutator [V, W] corresponds to the Lie algebra bracket of \mathfrak{g}. The conclusion is that

$$
\forall a \in \mathfrak{g}^{*}, v, w \in \mathfrak{g} \quad d_{1}(a)(v, w)=-a([v, w]) .
$$

