
Differential Topology QR Exam – With Solutions
Monday, January 8, 2024

All manifolds are assumed to be smooth. Ωk(M) denotes the space of smooth k-
forms on the manifold M . All items will be graded independently of each other.

Problem 1. Let f : X → M be an injective immersion, where X and M are
manifolds without boundary.

(a) Give an example, with proofs, where f is not an embedding.
(b) Show that if X is compact f must be an embedding.

Solution: (a) Take X an open interval, M = R2, and f a parametrization of
of a lemniscate (figure eight-see example 4.19 in Lee). f(X) is compact, but X is
not so f is not a homeomorphism onto its image. (b) If F ⊂ X is closed then it
is compact. Since f is continuous f(X) is compact and therefore closed in M and
therefore in f(X). So the pull-back of closed sets under inverse map f(X) → X is
closed, and therefore the inverse map is continous.

Problem 2. Let M be an n-dimensional manifold. The orientation covering of M
is defined as

M̃ = {(p, o) | p ∈M and o is an orientation of TpM} .

M̃ has a C∞ manifold structure such that the natural projection π : M̃ → M is a
smooth covering map (you can freely use this without proof).

(a) Show that M̃ has a natural orientation.
(b) Let ω be a compactly-supported n-form on M . Show that

∫
M̃
π∗ω = 0.

Solution: (a) Note that the natural projection induces T(p,o)M̃ ∼= TpM . Define

a point-wise orientation on M̃ by orienting T(p,o)M̃ by o. To prove that this is a
continous orientation, pick (p, o) and a connected chart (U, φ) of M where p ∈ U
and the chart orientation agrees with o at p. Note that π−1(U) = U+

∐
U− where

(p, o) ∈ U+ (and (p,−o) ∈ U−). Then φ ◦ π|U+ : U+ → Rn is a positive chart in the
point-wise orientation previously defined.

(b) Using a partition of unit WOLOG assume that β is supported in the domain
U of a connected chart in M . Keep the notation π−1(U) = U+

∐
U− of (a), where

(p, o) ∈ U+ ⇔ (p,−o) ∈ U−. Then
∫
π−1(U)

π∗β =
∫
U+
π∗β +

∫
U−
π∗β. Now the

obvious diffeomorphism f : U+ → U− is orientation-reversing, and f ∗π∗β = π∗β
since π ◦ f = π. Therefore∫

U+

π∗β =

∫
U+

f ∗π∗β = −
∫
U−

π∗β,

which implies
∫
π−1(U)

π∗β = 0.



Problem 3. Let f : X → M and g : Y → M be smooth maps between manifolds,
where f is a submersion. Show that

W := {(x, y) ∈ X × Y | f(x) = g(y)}

is a submanifold of X × Y . Hint: Consider F := f × g : X × Y →M ×M .
Solution: The strategy is to show that F = f × g intersects the diagonal

∆ ⊂M ×M transversely (observe that W = F−1(∆)). Let (x, y) ∈ X × Y be such
that F (x, y) ∈ ∆, i.e. f(x) = m = g(y). Let a, b ∈ TmM ; (a, b) is a generic vector
in T(m,m)M ×M . Note that (b, b) ∈ T(m,m)∆. Since f is a submersion, ∃u ∈ TxM
such that dfx(u) = a− b, and therefore

dF(x,y)(u, 0) + (b, b) = (dfx(u) + b, b) = (a, b).

This shows im
(
dF(x,y)

)
+ T(m,m)∆ = T(m,m)M ×M .

Problem 4. Consider φt : R3 → R3 given by

φt(x, y, z) = (etx, cos(t)y − sin(t)z, sin(t)y + cos(t)z), t ∈ R.

(a) Show that φ is a flow, and find the vector field V that generates it.
(b) Use the definition of the Lie derivative of a form to compute LV (dx ∧ dy).
(c) Quote Cartan’s formula, and use it to verify your answer to (b).

Solution: (a) φt induces the standard rotation by t radians in the y− z plane,
so it is easy to check that φt+s = φt ◦ φs. Moreover

V(x,y,z) =
d

dt
φt(x, y, z)|t=0 = 〈x,−z, y〉.

(b) LV (dx ∧ dy) = d/dt φ∗t (dx ∧ dy) |t=0. Computing:

φ∗t (dx ∧ dy) = etdx ∧ (cos(t)dy − sin(t)dz)

and so LV (dx∧ dy) = dx∧ dy− dx∧ dz. (c) Cartan’s formula: LV α = ιV dα+ dιV α.
Here α = dx ∧ dy is closed, so the formula reduces to

LV α = dιV α = d (xdy + zdx) = dx ∧ dy + dz ∧ dx,

which agrees with what was found in (b).

Problem 5. Let G be a connected Lie group with Lie algebra g that we identify
with TIG. Let Ωk

G denote the space of all left-invariant forms on G of degree k.

(a) Establish a natural isomorphism Ωk
G
∼=
∧k g∗.

(b) Show that the exterior differential maps Ωk
G into Ωk+1

G .
(c) Combining (a) and (b) with k = 0, 1, we obtain maps

d0 : ∧0g∗ ∼= R→ g∗ and d1 : g∗ → ∧2g∗.

Show that d0 = 0 and compute d1. Hint: For d1, use a formula for dα(V,W )
where α is any one-form and V,W are vector fields.



Solution: (a) In one direction Ωk
G →

∧k g∗ is just evaluation at the identity I.
The inverse is obtained by left-invariance,

∀α ∈ Ωk
G, g ∈ G αg = d (Lg−1)∗

g
αI

where Lg : G → G is left translation by g. (b) This follows because d commutes
with the operation of pull-back by any smooth map, so ∀α ∈ Ωk

G L
∗
gdα = dL∗gα = dα

which shows that dα is left-invariant. (c) k = 0: An invariant function is constant,
so its differential is zero. k = 1: Use

dα(V,W ) = V α(W )−Wα(V )− α([V,W ]).

We want to compute dαI for a given α ∈ Ωk
G. The idea is to take V,W to be

left-invariant fields, in which case the first two terms vanish (because α(V ), α(W )
are constant functions), and the commutator [V,W ] corresponds to the Lie algebra
bracket of g. The conclusion is that

∀a ∈ g∗, v, w ∈ g d1(a)(v, w) = −a([v, w]).


