General and Differential Topology QR Exam - May 4, 2023

All manifolds, vector fields, and differential forms are assumed to be smooth $\left(C^{\infty}\right)$.
Problem 1. Let $M=\left\{(w, x, y, z) \in \mathbb{R}^{4} \mid w^{2}+x^{2}=y^{2}+z^{2}=1\right\}$.
(a) Show that M is a submanifold of \mathbb{R}^{4}.
(b) Define a diffeomorphism $\pi: M \rightarrow M$ by $\pi(w, x, y, z)=(-y,-z, w, x)$. Let G be the group generated by this diffeomorphism. Show that the orbit space M / G is a manifold.
(c) Is M / G orientable?

Problem 2. Let $n \geq 2$. Let X be the set of real $n \times n$ matrices A satisfying $A+A^{t}=0$, where A^{t} is the transpose of A.
(a) Is X a Lie algebra?
(b) Let $\operatorname{GL}(n)$ be the group of invertible $n \times n$ matrices. Is $X \cap \mathrm{GL}(n)$ a Lie group?
(c) Let $M(n)$ be the set of all real $n \times n$ matrices. Define a function $f: X \rightarrow M(n)$ by $f(A)=$ $e^{A}-e^{-A}$. Describe the image under f of a small open neighborhood of the zero matrix.

Problem 3. Let α be a nonvanishing 1-form on a manifold M, so for any point $q \in M$, ker α_{q} is a codimension 1 subspace of the tangent space $T_{q} M$. Assume that f is a nonvanishing smooth function on M such that

$$
d(\alpha)=\frac{d f}{f} \wedge \alpha
$$

Prove that for any $p \in M$, there is a regular submanifold S of M such that $p \in S$ and $T_{q} S=\operatorname{ker} \alpha_{q}$ for all $q \in S$.

Problem 4. Let X be a complete vector field on a manifold M, and let $\alpha \in \Omega^{k}(M)$ be a k-form.
(a) Show that the following two conditions on the pair (X, α) are equivalent:

- the Lie derivative $\mathcal{L}_{X} \alpha$ is identically zero;
- for all $t \in \mathbb{R}, \theta_{t}^{*} \alpha=\alpha$, where $\theta_{t}: M \rightarrow M$ is the time t map of the flow along X.
(b) Suppose that $M=\mathbb{R}^{3}, \alpha=d x \wedge d y \wedge d z$, and

$$
X=a x(y-z) \frac{\partial}{\partial x}+b y(z-x) \frac{\partial}{\partial y}+c z(x-y) \frac{\partial}{\partial z}
$$

for some $a, b, c \in \mathbb{R}$. For which a, b, c is it the case that (X, α) satisfies the conditions of the previous part?

Problem 5. Let M be a compact manifold of positive dimension. Prove that there exists a vector field X on M such that for every nonempty open set U of M, X is not identically zero on U.

