THE UNIVERSITY OF MICHIGAN
 DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Algebraic Topology Solutions

May 2023

1. The unreduced suspension of a topological space X is the quotient of the space $X \times[0,1]$ by the smallest equivalence relation \sim which has $(x, 0) \sim(y, 0)$ and $(x, 1) \sim(y, 1)$ for all $x, y \in X$, with the quotient topology. For which $n \in \mathbb{N}$ is the unreduced suspension Z_{n} of the real projective space $\mathbb{R} P^{n}$ a topological manifold without boundary (i.e. has the property that every point $u \in Z_{n}$ has a neighborhood homeomorphic to \mathbb{R}^{k} for some k)?
Solution: The group $H_{i}\left(\mathbb{R}^{k}, \mathbb{R}^{k} \backslash\{0\}\right)$ is \mathbb{Z} for $i=k$ and 0 otherwise By excision, if a space M is a topological manifold of dimension k, then for any $* \in M$ and any open set $U \ni *$, we have

$$
H_{i}(U, U \backslash\{*\}) \cong H_{i}\left(\mathbb{R}^{k}, \mathbb{R}^{k} \backslash\{0\}\right)
$$

In our case, we can take

$$
U=\mathbb{R} P^{n} \times(1 / 2,1] /(x, 1) \sim(y, 1)
$$

which is contractible, while denoting by $*$ the point which is the image of $(x, 1)$, we have

$$
U \backslash\{*\}=\mathbb{R} P^{n} \times(1 / 2,1)
$$

which is homotopy equivalent to $\mathbb{R} P^{n}$. So by the long exact sequence in homology,

$$
H_{i}(U, U \backslash\{*\}) \cong \widetilde{H}_{i-1}\left(\mathbb{R} P^{n}\right)
$$

Since the right hand side has non-zero torsion for $n>1$ for at least one choice of i, the answer is NO for $n>1$. For $n=1, \mathbb{R} P^{1} \cong S^{1}$, so the answer is YES.
2. Give an example of a subgroup $H \subset F(a, b)$ of the free group on two generators a, b which has finite index but is not normal. Recalling that H is necessarily also free, give a set of free generators of H.
Solution: We can get an example by taking an irregular cover of the graph with one vertex and two loops a, b. For example, we can use a graph with three vertices x, y, z, an a-loop on x, a b edge from x to y and back, an a-edge from y to z and back, and a b-loop on z. Taking the base point to be, say, x, we obtain generators $a, b^{2}, b a^{2} b^{-1}, b a b a^{-1} b^{-1}$ (but there are infinitely many other correct answers).
3. Let X be the quotient of the space $S^{1} \times S^{1}$ obtained by identifying two different chosen points. Is the universal covering space of X contractible? Explain.

Solution: The space X is homotopy equivalent to the one-point union

$$
Y=\left(S^{1} \times S^{1}\right) \vee S^{1}
$$

so its fundamental group is the free product $G=(\mathbb{Z} \times \mathbb{Z}) * \mathbb{Z}$. Denote by H the normal envelope in G of the free factor of G isomorphic to \mathbb{Z}. Then H is isomorphic to the free group on $\mathbb{Z} \times \mathbb{Z}$. Additionally, the based covering of Y with respect to the subgroup $H \in \pi_{1}(Y, *)$ (where $*$ is the point of identification of the one-point union) is \mathbb{R}^{2} with a separate copy of S^{1} attached by one point to each point of $\mathbb{Z} \times \mathbb{Z} \subset \mathbb{R}^{2}$. This space is homotopy-equivalent to a graph, so its universal cover is contractible. Since universal covers (say, of CW-complexes) preserve homotopy equivalence, the universal cover of X is also contractible, so the answer is YES.
4. Let X be a CW-complex with exactly four cells, of dimensions $0, n, n+1, n+2$, where $n>0$. Assume further that the attaching map of the $(n+1)$-cell is not homotopic to a constant map. Denoting by X_{n} the n-skeleton of X, prove that the quotient space X / X_{n} is homotopy equivalent to $S^{n+1} \vee S^{n+2}$ where $Y \vee Z$ denotes the one-point union, i.e. the quotient of the disjoint union by identifying one point of Y with one point of Z. [Hint: Use the definition of cellular homology.]
Solution: Maps $f: S^{k} \rightarrow S^{k}$ for $k>0$ are classified, up to homotopy, by what they induce on $\mathbb{Z} \cong H_{k}\left(S^{k}\right)$. This is multiplication by an integer called the degree $\operatorname{deg}(f)$. Let k be the degree of the attaching map of the $(n+1)$-cell of X and let ℓ be the degree of the attaching map of the $(n+2)$-cell in X / X_{n}. The reduced cellular homology complex $\widetilde{C}^{\text {cell }}(X)$ then is

$$
\mathbb{Z} \xrightarrow{\ell} \mathbb{Z} \xrightarrow{k} \mathbb{Z}
$$

in dimensional degrees $n+2, n+1, n$. Since we must have $d d=0$, one of the numbers k, ℓ must be 0 . Since we assumed $k \neq 0$, we have $\ell=0$. This means that the attaching map of the $(n+2)$-cell in X / X_{n} is homotopic to a constant map. Homotopic attaching maps produce homotopy equivalent mappng cones.
5. Let $X=\left(S^{1} \times S^{1}\right) /\left(\{1,-1\} \times S^{1}\right)$ where $S^{1} \subset \mathbb{C}$ is the unit circle. Calculate the homology groups of X.
Solution: The space is homotopy equivalent to the one-point union

$$
S^{2} \vee S^{2} \vee S^{1} \vee S^{1}
$$

so $H_{0}(X) \cong \mathbb{Z}, H_{1}(X) \cong \mathbb{Z} \oplus \mathbb{Z}, H_{2}(X) \cong \mathbb{Z} \oplus \mathbb{Z}$ and the other homology groups are 0.

