General and Differential Topology QR Exam – May 2, 2022

This exam consists of five problems. All manifolds are assumed to be C^{∞} . $\mathfrak{X}(M)$ denotes the space of smooth vector fields on the manifold M. All items will be graded independently of each other.

Problem 1. The subgroup Γ of SU(2) generated by the matrix

$$\gamma := \begin{pmatrix} i & 0\\ 0 & -1 \end{pmatrix} \in \mathrm{SU}(2)$$

is isomorphic to \mathbb{Z}_4 , and it acts on the unit three-sphere $S^3 \subset \mathbb{C}^2$ by matrix multiplication. Let $X = S^3/\Gamma$ be the orbit space, with the quotient topology. Answer the following questions, with proofs:

- 1. Is X is second countable?
- 2. Is X is Hausdorff?
- 3. Is the projection $\pi: S^3 \to X$ is a local homeomorphism?

Problem 2. A smooth $F: M \to M$ is called a *Lefshetz map* iff for all $p \in M$ such that F(p) = p one has:

 $1 \in \mathbb{R}$ is not an eigenvalue of $dF_p: T_pM \to T_pM$.

- 1. Show that F is Lefschetz iff its graph and the diagonal $\Delta \subset M \times M$ intersect transversely.
- 2. Show that if F is Lefschetz then the set $\{p \in M : F(p) = p\}$ consists of isolated points.
- 3. Is the converse of the previous statement true?

Problem 3. Let $S^2 \subset \mathbb{R}^3$ be the two-sphere with the standard orientation, and $F: S^2 \to S^2$ be given by F(a, b, c) = (a, -b, -c). Note that F is a diffeomorphism (no proof needed). Also, let x, y, z denote the restrictions of the coordinate functions to S^2 , and let $\alpha = xydy \wedge dz$.

- 1. Establish whether or not F is orientation preserving, and compute $F^*(\alpha)$. What does your findings imply about the value of $\int_{S^2} \alpha$? Explain.
- 2. The vector field $\langle -y, x, 0 \rangle$ in \mathbb{R}^3 is tangent to the sphere, and therefore it restricts to a vector field $X \in \mathfrak{X}(S^2)$. Compute the Lie derivative $\mathcal{L}_X \alpha$.

Problem 4. Let *M* be a smooth manifold, and $X \in \mathfrak{X}(M \times \mathbb{R})$ be a smooth vector field of the form

$$\forall (p,s) \in M \times \mathbb{R}$$
 $X_{(p,s)} = (V_{(p,s)}, \partial_s),$ where $V_{p,s} \in T_p M.$

(We are identifying $T_{(p,s)}(M \times \mathbb{R})$ with $T_pM \times T_s\mathbb{R}$.) For each $(p,s) \in M \times \mathbb{R}$, let $t \mapsto \Phi_t(p,s)$ be the integral curve of X starting at (p,s), and denote

 $\phi_{t,s}(p) := \pi \left(\Phi_{t-s}(p,s) \right), \quad \text{where} \quad \pi : M \times \mathbb{R} \to M \quad \text{is the projection.}$

- 1. Show that $\forall t_0 \in \mathbb{R}, p \in M$ the curve on $M \ t \mapsto \gamma(t) = \phi_{t,t_0}(p)$ is defined in a neighborhood of t_0 and satisfies $\dot{\gamma}(t) = V_{\gamma(t),t}, \gamma(t_0) = p$.
- 2. Assuming that X is complete, show that $\forall r, s, t \in \mathbb{R}$

$$\phi_{t,s} \circ \phi_{s,r} = \phi_{t,r}$$

where $\phi_{t,s}: M \to M$ is the map $p \to \phi_{t,s}(p)$, etc.

Problem 5. Let G be a Lie group with Lie algebra $\mathfrak{g} = T_e G$ (where e is the identity), and let $A, B \in \mathfrak{g}$ be linearly independent elements satisfying [A, B] = 0.

- 1. Carefully explain why $\forall s, t \in \mathbb{R} \exp(sA) \exp(tB) = \exp(tB) \exp(sA)$, where $\exp : \mathfrak{g} \to G$ is the exponential map.
- 2. Show that the map $E: \mathbb{R}^2 \ni (s,t) \mapsto \exp(sA) \exp(tB) \in G$ is a an immersion.
- 3. Specialize to the case G = U(3), and A, B diagonal with diagonal entries the components of $i\vec{\lambda} = \langle i\lambda_1, i\lambda_2, i\lambda_3 \rangle$ and $i\vec{\mu} = \langle i\mu_1, i\mu_2, i\mu_3 \rangle$ respectively.

Under what conditions on $\vec{\lambda}, \vec{\mu} \in \mathbb{R}^3$ is the image of the map E a closed (regular) submanifold of U(3)?