
Algebraic Topology QR Exam – May 2022

1. Let X be the quotient space defined by the following polygon with edge identifications. Compute
π1(X).

2. Let X be the wedge of 2 circles a and b with single vertex v. By mild abuse of notation we write
a and b to mean both the edges of the graph X and the corresponding generators of π1(X, v).
Consider the following two covers p : X̃ → X, with the map p specified by the edge labels and
orientations of X̃. A distinguished lift ṽ of v is marked with a gray dot. Let H = p∗(π1(X̃, ṽ)).
For each cover, state with (very) brief justification,

(i) a free generating set for H,

(ii) the index of H as a subgroup of π1(X, v),

(iii) whether the cover is regular,

(iv) the deck group of the cover (as an abstract group),

(v) generators for the normalizer of H in π1(X, v).

(a) (b)
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3. Let p : X̃ → X be a covering map of path-connected spaces, and let x̃0 ∈ X̃. Let x0 = p(x̃0).
For each of the following statements: either prove the statement using the definition and/or
lifting properties of a covering space, or construct a counterexample. In a proof, give complete
theorem statements for any lifting properties you cite.

(i) The induced map p∗ : π1(X̃, x̃0)→ π1(X,x0) is injective.

(ii) The induced map p∗ : H1(X̃)→ H1(X) is injective.

4. Let N be a positive integer. Let X be the 2-sphere, and let A ⊆ X be the union of N disjoint
circles of latitude (pictured below for N = 3). Let X/A be the quotient space with A collapsed

to a point. Compute H̃∗(X/A).

5. LetM be an n-manifold for some n ≥ 1, and let x ∈M . Consider the pair (X,A) = (M,M\{x}).

(a) Consider the quotient space X/A where A is collapsed to a point. Describe the topology on
X/A and show (by writing an explicit homotopy and verifying continuity) that this space is
contractible.

(b) Prove that H∗(X,A) and H̃∗(X/A) are not equal.
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Solutions

1. The description of X as a polygon with edge identifications naturally suggests a CW complex
structure on X. Let X1 denote the 1-skeleton of X, with edges a, b, c. The fundamental group
of a CW complex X is the quotient of the (necessarily free) group π1(X1) by a relator for each
2-cell in the 2-skeleton of X.

By tracing through the edge identifications we find that X has two distinct vertices v and w.

Thus its 1-skeleton X1 is as shown.

Take v to be the basepoint. The edge b is a maximal tree in the 1-skeleton. Hence π1(X1, v) is
the free group on the two generators A = [a] and C = [bcb−1].

The CW complex X has a single 2-cell. It is glued, starting in the top left corner, along the
word (read left-to-right)

abcb−1bc−1b−1a−1abcb−1.

As an element of π1(X1, v), this word is equivalent to the based loop

[abcb−1bc−1b−1a−1abcb−1]

= [abcc−1b−1bcb−1]

= [abcb−1]

= AC

Thus π1(X) ∼= 〈 A,C | AC 〉. This relation implies that C = A−1, so we can simplify the
presentation π1(X) ∼= 〈 A | 〉 ∼= Z.
Remark: The space X is not a surface: it is not locally Euclidean; each boundary segmented is
glued to three or more other segments. We therefore cannot use Euler characteristic / classifi-
cation of surfaces arguments to compute π1(X).

2. (i) To find a free generating set of a graph, we must make a choice of maximal tree T (i.e.
a contractible subgraph containing every vertex). For example, we could choose the trees
highlighted in green below.
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(a) (b)

Then π1(X̃) is generated by a free generating set corresponding to a loop for every edge in
the complement of the chosen tree T . For each such edge e ∈ X̃ \ T , we find a loop based
at ṽ that passes through the tree T , traverses e once, and returns to ṽ through T .

The induced map p∗ on π1 is injective, so we must determine the image of each free gen-
erator under p. With these choices of maximal trees we obtain,

(a) H is freely generated by b2, ba2b, bab2ab.
(b) H is freely generated by ba, ba−1, b3ab−2, b3a−1b−2, b5ab4, b5a−1b4, b6.

(ii) The index of H is equal to the degree of the cover p. This is equal to the cardinality of
p−1(v), the number of vertices of the graph X̃.

(a) The index is (countably) infinite.
(b) The index is 6.

(iii) We can show in both cases that the covers are not regular, as the group of deck maps does
not act transitively on the set of vertices p−1(v) of X̃. Consider the vertices w̃ labelled
below.

(a) (b)

(a) By inspection, there is no deck map (in fact no graph automorphism) mapping ṽ to w̃.
(b) The only graph automorphisms mapping ṽ to w̃ reverse the orientation of the edge
[ṽ, w̃], and hence are not valid deck maps.

(iv) The deck groups are the subgroup of graph automorphisms of the covers X̃ that preserve
the labels and orientations of the edges. We compute them by studying (visually) the
symmetry of the graphs. (In principle we could alternatively compute them by calculating
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the normalizers N(H) and the quotient groups N(H)/H algebraically).

(a) By inspection, the only nontrivial deck map is 180◦ rotation in the plane of the page.
Hence the deck group is Z/2Z.
(b) By inspection, the deck group is generated by 120◦ rotation in the plane of the page.
Thus it is Z/3Z.

(v) A loop in π1(X, v) is in the normalizer N(H) if and only if its lift to X̃ starting at ṽ is a path
from ṽ to a vertex w̃ such that w̃ is in the orbit of ṽ under the deck group. (See for example
the proof of Proposition 1.39 in Hatcher). For any given vertex w̃ ∈ p−1(v), the set of loops
in π1(X, v) that lift to a path from ṽ to w̃ comprise a right coset of the subgroup H in
π1(X, v). It follows that the normalizer N(H) of H is generated by H and, for each vertex
w̃ in the deck group orbit of ṽ, a choice of loop γ ∈ π1(X, v) that lifts to a path from ṽ to w̃.

(a) The normalizer is generated by H and the element bab.
(b) The normalizer is generated by H, b2, and b4.

3. (a) This statement is true (and is foundational to the classification theorem of covering spaces).
Recall that covering maps satisfy the following homotopy lifting property.

Theorem (Covering maps have the homotopy lifting property). Let p :
X̃ → X be a covering map, and let Ft : Z×I → X be a homotopy of maps Z → X.
Then given any lift F̃0 : Z → X̃ of F0, there exists a unique lift F̃t : Z × I → X̃ of
Ft whose restriction to t = 0 is the lift F̃0.

Z × {0} ∼= Z
F̃0 //

i

��

X̃

p

��

Z × I
Ft

//

F̃t

∃!

99

X

Before we proceed, we will use the homotopy lifting property to deduce the following lemma.

Lemma (Lifts of constant paths are constant). Let p : X̃ → X be a covering
map. Let α : I → X be the constant path at some point y0 ∈ X. Then any lift
α̃ : I → X̃ of α to X̃ is a constant path.

Consider such a constant path α : I → X. We may view α as a homotopy of maps from a
point to X. A choice of lift 0 7→ ỹ0 of the map α|{0} : 0 7→ y0 is equivalent to a choice of
preimage ỹ0 ∈ p−1(y0). Given a choice ỹ0 we may lift α to the constant path α̃ at ỹ0. But
then the uniqueness condition in the homotopy lifting property implies that these constant
paths are the only lifts of α.

With this homotopy lifting property and this lemma, we will prove that the induced map
p∗ on π1 is injective.

Suppose we have an element [γ] ∈ π1(X̃, x̃0) such that p∗([γ]) := [p◦γ] is trivial in π1(X,x0).
Our goal is to show that [γ] is trivial in π1(X̃, x̃0). Since p∗([γ]) = 1, there exists a homotopy
Ft : I × I → X of based loops from p ◦ γ to the constant loop cx0

at x0. Concretely, this is
a homotopy Ft satisfying

• F0 = p ◦ γ
• F1 = cx0

• Ft(0) = Ft(1) = x0 for all t.

The domain I × I of F is illustrated below.
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Since γ is a lift of F0 = p ◦ γ, we can apply our homotopy lifting theorem to obtain a lift
F̃t : I × I → X̃ of F extending γ,

I × {0} ∼= I
F̃0=γ //

i

��

X̃

p

��

I × I
Ft

//

F̃t

∃!

::

X

To complete the problem, we will verify that F̃t is a based homotopy of loops from γ to the
constant loop at x̃0. Concretely, we must check

• F̃0 = γ

• F̃1 = cx̃0

• F̃t(0) = F̃t(1) = x̃0 for all t.

The domain I × I of F̃ is illustrated below.

The property F̃0 = γ follows from our construction of F̃ . Consider the restriction of F̃ to
the maps

I −→ X̃

s 7−→ F̃1(s)

I −→ X̃

t 7−→ F̃t(0)

I −→ X̃

t 7−→ F̃t(1)

These are lifts of the constant paths F1, t 7→ Ft(0), and t 7→ Ft(1). By the lemma, these
lifts must be constant paths. Since γ is a based loop at x̃0, we see F̃0(0) = F̃0(1) = x̃0. We
conclude the second and third paths (hence also the first path) must be the constant paths
at x̃0. This concludes the proof.

(b) This statement is false, and many common examples of path-connected covering spaces
p : X̃ → X with nonabelian fundamental groups will be counterexamples.

For example, consider any cover p : Σh → Σg (of degree d > 1) of closed orientable surfaces
with g > 1, such as the following (image from Hatcher p82).
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Then by an Euler characteristic argument, 2− 2h = d(2− 2g), so h = d(g− 1) + 1 > g. But
then H1(Σh) ∼= Z2h does not inject into H1(Σg) ∼= Z2g.

Alternatively, consider any degree-d cover p : X̃ → X of a wedge of two circles X by a path-
connected graph X̃. Again an Euler characteristic argument implies that X̃ is homotopy
equivalent to a wedge of (d+1) circles, but H1(X̃) ∼= Zd+1 does not embed into H1(X̃) ∼= Z2

for any d > 1. In particular, both covers from Problem 2 are counterexamples. More
generally, any positive degree cover of path-connected finite graphs is a counterexample.

4. Approach #1 : Explicit homotopy equivalence. The space X/A is homotopy equivalent to a
wedge of (N+1) 2-spheres and (N−1) circles. We will exhibit an explicit homotopy equivalence
(illustrated for N = 3) by repeatedly applying the following principle: Given a CW complex Y
and a contractible CW subcomplex S, the quotient map Y → Y/S is a homotopy equivalence.

Our argument is summarized in this figure:

We first collapse each of the N circles of latitude to a point. The result is (N + 1) 2-spheres,
each wedged to its neighboring sphere(s) at one of N distinguished points, as shown. Call this
space Z.

The space X/A is the quotient of Z identifying these N wedge points. Consider the space W
obtained by gluing (N − 1) edges to Z as shown.
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Since the (N − 1) edges form a contractible subcomplex, the quotient map collapsing them to a
point is a homotopy equivalence. Thus X/A is homotopy equivalent to W . On the other hand,
consider the contractible subcomplex of W consisting of the (N − 1) edges shown below.

By collapsing this subcomplex, we see that W is homotopy equivalent to a wedge of (N − 1)
circles and (N + 1) 2-spheres.

Thus

X/A '

(
N+1∨

S2

)
∨

(
N−1∨

S1

)
.

We know for all n and spaces A,B,

H̃k(Sn) ∼=
{

Z, k = n
0, otherwise,

Hk(A ∨B) ∼= Hk(A)⊕Hk(B).

We further know X/A is path-connected so H̃0(X/A) = 0. We conclude,

H̃k(X/A) ∼=


0, k = 0
ZN−1, k = 1
ZN+1, k = 2
0, otherwise.

Approach #2 : The long exact sequence of a pair. Since we can realize X as a CW complex
with A a CW subcomplex, the pair (X,A) is a good pair, and H∗(X,A) ∼= H̃∗(X/A). Thus we
can study these groups using the long exact sequence of a pair.

We know that X/A is path-connected (being the continuous image of X = S2 under a quotient

map), so H̃0(X/A) = 0. Moreover, it is a 2-dimensional CW complex, so H̃k(X/A) = 0 for

k > 2. It remains to compute H̃k(X/A) for k = 1, 2.

Since X = S2 and A ∼= tNS1, we find

H̃k(X) ∼= H̃k(S2) ∼=
{

Z, k = 2
0, otherwise.
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H̃k(A) ∼= H̃k(tNS1) ∼=

 ZN−1, k = 0
ZN , k = 1
0, otherwise.

Then the long exact sequence of pair is as follows.

· · · H̃3(X) H̃2(A)

0 0

H̃2(X) H̃2(X/A) H̃1(A) H̃1(X)

Z H̃2(X/A) ZN 0

H̃1(X/A) H̃0(A) H̃0(X) H̃0(X/A) 0.

H̃1(X/A) ZN−1 0 0

The groups H̃1(X/A) and H̃2(X/A) sit in exact sequences of abelian groups

0 −→ H̃1(X/A) −→ ZN−1 −→ 0

0 −→ Z −→ H̃2(X/A) −→ ZN −→ 0

Exactness of the first sequence implies H̃1(X/A) ∼= ZN−1.

Consider the second sequence. A standard result from abstract algebra states that, if ever the
quotient group in a short exact sequence of abelian groups is free abelian, then the short exact
sequence splits. It follows that H̃2(X/A) ∼= ZN+1. We will also verify this result directly without
quoting this algebra fact.

Since X/A has the structure of a finite CW complex, the group H̃2(X/A) is a finitely generated

abelian group. Suppose H̃2(X/A) contained a torsion element t. Since the quotient group ZN−1

is free abelian, the element t must be contained in the kernel of the map H̃2(X/A)→ ZN . But

the kernel of this map is isomorphic to Z, hence t = 0. Thus H̃2(X/A) is free abelian. (We could
also infer this result directly, as X/A has no 3-cells). Then, we apply the rank-nullity theorem

(for Z-linear maps) to the map H̃2(X/A)→ ZN and we deduce that H̃2(X/A) ∼= ZN+1.

Again we conclude

H̃k(X/A) ∼=


0, k = 0
ZN−1, k = 1
ZN+1, k = 2
0, otherwise.

5. (a) Let q : M → M/(M \ {x}) be the quotient map. Recall that, by definition of the quotient
topology, a set U in the quotient space is open if and only if q−1(U) is open. The quotient
space M/(M \ {x}) has, as a set, two points: the image x of x, and the image y of M \ {x}.
Manifolds have the T1 property (points are closed), so q−1(y) = M \ {x} is open. Thus {y}
is open in the quotient. Since dim(M) > 0, the point q−1(x) = {x} is not open in M , so {x}
is not open in the quotient. The quotient is the therefore the set {x, y} with the following
topology,

{x, y}, {y},∅,
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sometimes called Sierpiński space. To show this space is contractible, we will write an
explicit homotopy F : I × {x, y} → {x, y}. There are many possible such homotopies; here
is one example.

F (t, z) =

{
x, if z = x and t ∈ [0, 1], or z = y and t = 1
y, if z = y and t ∈ [0, 1)

.

This map F is illustrated below.

Then F0 is the identity map on {x, y}, and F1 is the constant map at the point x. Moreover,
since the domain of F only has one proper nonempty open subset {y}, to verify that F is
continuous, we only need to verify that the preimage of {y} is open. But F−1(y) = [0, 1)×{y}
(shaded blue in the figure) and this subset is open in the product topology on I×{x, y}. Thus
Ft is a contraction of the quotient space to the point x, and we conclude that M/(M \ {x})
is contractible.

(b) Let U ∼= Rn be a small Euclidean ball about the point x. By excision, Hn(M,M \ {x}) ∼=
Hn(U,U \ {x}). Since U is contractible and U \ {x} ' Sn−1, the long exact sequence of a
pair

· · · H̃n(U) Hn(U,U \ {x}) H̃n−1(U \ {x}) H̃n−1(U) · · ·

H̃n(Rn) H̃n(U,U \ {x}) H̃n−1(Sn−1) H̃n(Rn)

0 H̃n(U,U \ {x}) Z 0

implies that Hn(U,U \ {x}) ∼= Z for any n ≥ 1. But by part (a) the quotient M/(M \ {x})
is contractible and hence H̃n(M/(M \ {x})) = 0.
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