
General and Differential Topology QR Exam – Aug 17, 2022

SOLUTIONS

Problem 1. Let M be a smooth manifold.

(a) Prove that the total space of the tangent bundle TM is orientable.
(b) Now suppose M is the union of two orientable open submanifolds U1, U2 and the intersection

U1 ∩ U2 is connected. Prove that M is orientable.

Solution.

(a) Let {Uα, φα : Uα → Rn} be any atlas for M . We then have maps Tφα : TUα → TRn. Identifying
TRn with R2n (with the first n coordinates giving the point in Rn and the last n giving the
tangent vector), we obtain an atlas {TUα, Tφα : TUα → R2n} for TM . It remains to check
that this atlas is oriented, i.e. that the determinant of the Jacobian of any transition function
Tφα◦Tφ−1

β is positive. But if we decompose this (2n)×(2n) Jacobian matrix into n×n blocks, it
is clearly block lower triangular, since the map on points doesn’t depend on the chosen tangent
vector. Moreover, the two blocks on the diagonal are equal since they are both the Jacobian
matrix of the transition function φα ◦ φ−1

β for the original atlas. Therefore the determinant
of this (2n) × (2n) Jacobian is the square of the determinant of the n × n Jacobian, hence is
positive.

(b) Let V = U1 ∩ U2. First, if V is empty then M is the disjoint union of U1 and U2 and we can
just take any orientation on each of them to get an orientation of M .

Now assume V is nonempty. Since U1 is orientable and V is an open submanifold of U1, V
is orientable. Since V is connected, it has exactly 2 orientations, which are opposite to each
other. Thus if we choose any orientations on U1 and U2 and then reverse the orientation on U2

if necessary, the induced orientations on V from U1 and U2 will coincide. This then gives an
orientation of M .

�

Problem 2. Let M = R2/Z2 (= S1×S1). Let ι : M →M be the involution ι(x, y) = (−x, y+0.5).
Let Q be the quotient of M by ι, with a natural smooth manifold structure inherited from R2.

(a) Explain how to interpret dy as defining a 1-form on Q.
(b) Show that, viewed as a 1-form on Q, dy is closed but not exact (so gives a nonzero element in

H1
dR(Q)).

Solution.

(a) The standard 1-form dy on R2 is invariant both with respect to the action of Z2 and the action
of ι, so it descends to a 1-form on the quotient manifold Q. (If we wanted to make this more
explicit, note that the quotient map M → Q has sections U → M (diffeomorphisms onto the
image) for sufficiently small open sets U ⊂ Q, and picking one such section lets us define a
1-form dy on U . Invariance of dy with respect to the group action means that this doesn’t
depend on the choice of section U , and then it is easy to see that these 1-forms glue to a 1-form
on all of Q.)

(b) To see that dy is closed as a 1-form on Q, note that d(dy) = (d2)y = 0 on R2, and d clearly
commutes with the quotient construction in the previous part since it can be computed on small
open sets. To see that dy is not exact as a 1-form on Q, consider the curve φ : [0, 1]→ Q given
by φ(t) = (0, t). We clearly have that the integral of dy over φ is 1 6= 0. But if dy was exact,
it would be df for some function f : Q→ R and then the integral would be f(φ(1))− f(φ(0)),
which is 0 because φ(1) = φ(0) in Q. Therefore dy is not exact.
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Problem 3. Let SL(n) be the group of n × n real matrices with determinant 1, considered as a
submanifold of the vector space M(n) of all n × n real matrices. For each g ∈ SL(n) identify the
tangent space Tg SL(n) with a linear subspace of M(n).

(a) Explicitly compute the linear subspace Tg SL(n) for an arbitrary g ∈ SL(n).
(b) Let F : SL(n) → SL(n) be the map F (g) = ggT , where gT is the transpose of the matrix g.

Explicitly compute the map on tangent spaces dFid : Tid SL(n) → Tid SL(n), where id is the
identity matrix. What is the rank of dFid?

Solution.

(a) First we compute the tangent space to SL(n) at the identity matrix id. This can be done by
linearizing the determinant function: if x ∈ M(n), then det(id + tx) = 1 + tr(x)t + O(t2).
Therefore Tid SL(n) is the space of traceless matrices.

For the tangent space at an arbitrary matrix g ∈ SL(n), note that SL(n) is a Lie group, so
left multiplication by g induces an isomorphism from Tid SL(n) to Tg SL(n). Thus Tg SL(n) is
the space of matrices of the form g · (traceless).

(b) To compute dFid(x) for a tangent vector x (a traceless matrix by the previous part), we simply
need to compute the coefficient of t1 in F (id + tx) = (id + tx)(id + txT ), which is x + xT . So
dFid(x) = x + xT . It is easy to see that the image of this linear map is the space of symmetric

traceless n× n matrices, which has rank (1 + 2 + · · ·+ (n− 1)) + (n− 1) = n2+n−2
2

.
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Problem 4. Here are two unrelated questions about submersions of smooth manifolds π : M → B.

(a) Suppose that dimM = dimB and M is compact. Prove that π−1(q) is a finite set for any point
q ∈ B.

(b) Suppose that Y is a smooth vector field on B. Prove that there exists a smooth vector field X
on M such that X is π-related to Y (i.e. π∗(X(p)) = Y (π(p)) for any point p ∈ M). (Hint:
first show that you can find such an X locally on M , then use a partition of unity argument.)

Solution.

(a) Since dimM = dimB, the submersion π is a local diffeomorphism. In particular, the fiber π−1(q)
is discrete. This fiber is also a closed subset of the compact manifold M , so it is compact. But
a discrete compact topological space is finite, so we are done.

(b) Since π is a submersion, near each point in M it looks locally like the projection of an open set
U ⊂ Rm under the map p : Rm → Rn forgetting the last m−n coordinates. In such coordinates,
given a vector field Y =

∑n
i=1 fi

∂
∂xi

on the image p(U), it is easy to find a p-related vector field

X on U : we simply take X to be given by the same expression as X (with no dependence on
the last m− n coordinates).

Thus we can cover M by open sets Uα such that there exist vector fields Xα on Uα such that
Xα is π|Uα-related to Y . It remains to combine these using a partition of unity argument. Let
{fα} be a partition of unity subordinate to the open cover {Uα}. Then let X =

∑
α fαXα. We

then have

π∗(X(p)) =
∑
α

fα(p)π∗(Xα(p)) =
∑
α

fα(p)Y (π(p)) = Y (π(p)),

where the sums run over the finitely many α with fα(p) 6= 0.

�

Problem 5. Let M be a compact smooth manifold. Let X be a smooth vector field on M . For
each part, just give a brief explanation or brief description of a counterexample.
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(a) Is X necessarily complete? (A complete vector field is one such that all integral curves extend
to be defined for all t ∈ R.)

(b) Now assume that X is complete, and take the integral curve through some point p, φp : R→M .
Is φp necessarily an immersion?

(c) Now assume an integral curve φp is an immersion. Is the image of φp necessarily closed in M?

Solution.

(a) Yes, X is complete. Near any point we can find an open neighborhood where the integral curve
is defined on (−ε, ε) for some ε > 0, and then compactness of M gives that we can find such
an ε that works uniformly on all of M , and then we can extend the domain to R by repeatedly
extending by ε.

(b) No, φp is not an immersion - for a counterexample, simply take X = 0 so that φp is constant.
(We would need to require that X be nonvanishing to get an immersion.)

(c) No, the image isn’t necessarily closed in M . One way to see this is to take a translation-invariant
vector field on the torus R2/Z2, with some irrational slope - then the image of any integral curve
will be dense on the torus (but not all of the torus).
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