Differential Topology QR Exam — Solutions
August 16, 2021
M denotes a C'*° manifold of dimension n.
X(M) is the space of all smooth vector fields on M.
All items will be graded independently of each other, to the extent possible.

Problem 1.- Assume M is connected. Prove that between any two points there exists a smooth
curve connecting them.

Solution: Define the relation on M: p ~ q iff p and ¢ can be joined by a smooth curve. Claim:
this is an equivalence relation. The only non-trivial property is transitivity. Assume p ~ ¢ and
g ~ r, and let 71 join p to ¢ and ~, join ¢ to r. WOLOG ~; : [a,b] = M and 75 : [b,c] = M with
y(a) = p, y1(b) = ¢ = y2(b) and y2(c) = r. Let 4 : [a, ] = M be the continuious piece-wise smooth
curve agreeing with 1 on [a,b] and with 2 on [b,¢]. Using a smooth coordinate chart centered at
¢, modify 4 in a small neighborhood of b to yield a smooth curve « : [a,c] = M joining p and r (it
is irrelevant if it does not pass by ¢). This proves transitivity.

Now pick p € M and let C, be the equivalence class of p. We claim that C, is open. Indeed let
q € Cp and ¢ : U — R™ a coordinate chart containing g with ¢(U) a Euclidean ball. Since any two
points in a Euclidean ball can be joined by a smooth curve (say a straight line segment) the same
is true for U, and by transitivity U C C,. Therefore the equivalence classes of ~ partition M into
open sets, and since M is connected there is only one equivalence class.

Problem 2.- On vector fields:

(1) Let X € X(M), and assume that Je > 0 such that Vp € M the integral curve of X through
p is defined Vt € (—e¢, €). Prove that X is complete.
(2) Use (1) to show that every vector field on a compact manifold is complete.

Solution:

(1) Arguing by contradiction, assume Ip € M such that the domain I C R of the maximal
integral curve vy, : I — M of X starting at p is bounded above, let 3 = sup I be the upper endpoint
of I. Let T = —¢/2 and let ¢ = 7, (T). Define a curve 7 : (—¢, 5+ ¢/2) — M by:

e if t € (—¢, B)
A(t) = {vq(t —T) ifte(T,+¢/2)

where we use that the integral curve 7, is defined on (—¢,€). Both curves on the right-hand side
of this definition are integral curves of X that agree on the overlap of their domains, by the group
law of the flow ¢ of X:

Yt =T) = ¢r-7(q) = dr—7(d7(p)) = :(p) = 1 (2).

Therefore (by uniqueness of integral curves) ¥ is an integral curve of X starting at p. However
B+ ¢€/2 > 8, which contradicts the definition of S.

(2) Let X € X(M) with M compact. By the existence theorem of integral curves, Vp € M 3U,
neighborhood of p and Je, > 0 such that Vg € U, the integral curve of X starting at p exists V¢ €
(—€p,€p). Let Uy, ..., Upy be a finite subcover of the cover {Up,}penr. Then € := min{e,,, ..., € }
and X satisfy the hypothses of (1), and therefore X is complete.

Problem 3.- Two unrelated questions on Lie groups:
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(1) Let U C G be a neighborhood of the identity where G is a Lie group. Show that there
exists V' a neighborhood of the identity such that V C U and Vg,h € V gh™! € U.

(2) Show that every Lie group G is orientable, and that not all orientable manifolds admit a
Lie group structure.

Solution:

(1) Consider the map F : G x G — G given by F(g,h) = gh™!. This is a smooth (and
therefore continuous) map, and F(e,e) = e where e is the identity. By continuity, there exists a
neighborhood W C G x G of (e, e) such that F(W) C U. By definition of the product topology,
3V’ € G a neighborhood of the identity such that V' x V' Cc W. Now let V =V'NU.

(2) Let G be a Lie group of dimension n and Vg € G, let L, : G — G be left-translation by g,
that is Ly (k) = gk. Pick v € \" g*\ {0}, and Vg € G define vy = L} v € A" TyM. Then v is a
smooth non vanishing top-degree form on G, which shows that G is orientable.

OR: Pick ey, ..., e, a basis of g and extend them to left-invariant vector fields F, ..., E, on G.
Evaluating these fields at each g € G yields a basis of T;G. Define an orientation of G' by declaring
these basis to be positive.

For the converse, use that any Lie group has plenty of non-vanishing smooth vector fields: Any
non-zero left-invariant field, for example. Such fields do not exist e.g. on 52, which is orientable
nonetheless.

Problem 4.- Let a be a smooth one-form on M. Assume that Vp € M «, # 0.
(1) Show that N := {(p,v) € TM | ayp(v) = 0} is a submanifold of the tangent bundle T'M.
(2) Assume that do = 0. Prove that Vp € M there exists a regular submanifold S C M such
that p € S and Vg € S TS = ker ay.

Solution:
(1) Let (z',...,2™) be coordinates on an open set U C M, and (x!,... 2" vl ...o") be the
associated coordinates on TU. Let oo = Zj aj(z)dz?. Then N'NTU is defined by the equation

Z aj(z)v! =0,

that is, NN TU is the zero level set of the function F(z,v) = >, aj(x)v’, F : TU — R. The
Jacobian of this function is

(VoF,a1(z), ... an(x))"
which is nowhere zero since o does not vanish. By the regular value theorem N NTU is a subman-
ifold.

(2) Let p € M and U a neighborhood of p diffeomorphic to a Euclidean ball. By the Poincaré
lemma, 3f € C*°(U) such that a|y = df. Since a does not vanish, f has no critical points,
and every ¢ € R is a regular value of f. Let S = f~!(c), where ¢ = f(p). Then S is a regular
submanifold, p € § and Vg € S T,;S = ker df; = ker «,.

Problem 5.- Let f : M x W — R be a smooth function, where W C R is open. For each
(p,w) € M x W, define the partial differential das f(,,.) € T, M by

Aatfipan(G0)) = G 10, emo

for each smooth curve v : (—¢,¢) — M such that v(0) = p.



Assume that zero is a regular value of the map ® : M x W — RF defined as

2(0) = () o))

(1) Let C := ®71(0). Explain why C is a submanifold and compute its dimension. If (p,z) € C
and (z!,...,2™) are coordinates in a neighborhood of p, write equations for the components
(al,...,a™ B, ... B¥) of vectors in T(p,w)C in the coordinates (z',..., 2", wh, ... wh).

(2) Show that the map

FIC—)T*M7 F(p7w) = (p7de(p,w))
is an immersion.

Solution:

(1) The regular value theorem immediately implies that C is a submanifold of M x W, and that
if (p,w) € C then

T(p,w)C = ker dq)(p,w)-

By assumption the rank of d®, ) is k, and therefore its kernel has dimension n +k —k =n, so C
has the same dimension as M.

Introduce coordinates (z',...,2") in a neighborhood of p. Then the matrix of d®, ) (the
Jacobian) is

J = (fww fww)a
where f, is the matrix fu, = (%), and similarly for f,.,. A tangent vector >_ a0+ 70,
is in T(p,w)C iff

Jwea + fuwB =0.

(2) Consider the extension F' : M x W — T*M of F given by the same expression as F. In
coordinates,

Fow) = (o g5

and therefore the Jacobian matrix of F is

(I, 0
K o <fCE(13 f:pw) '

Since F = F o, where ¢ : F < M x W is the inclusion, the kernel of dFY, ., is the space of vectors

in T{;,4,)C that are in the kernel of F. Therefore, the components of the vectors in ker dF{,, ., are
the intersection of the kernels of the matrices J and K. Computing using column vectors a € R™,

B € RF:
o o [0
J <ﬂ) - fwz()é+fwwﬂv (ﬁ) - (fmma+f$wﬁ7>

we see that the joint kernel has for equations a« = 0, fi,,0 = 0 and f,f = 0. Thus the equation
on (3 is

J'B=o0.
Since J is onto, JT is 1-1 and this equation implies that 3 = 0. Therefore ker dF(pw) =0, ie Fis
an immersion.



