
Differential Topology QR Exam – Solutions
August 16, 2021

M denotes a C∞ manifold of dimension n.
X(M) is the space of all smooth vector fields on M .

All items will be graded independently of each other, to the extent possible.

Problem 1.- Assume M is connected. Prove that between any two points there exists a smooth
curve connecting them.

Solution: Define the relation on M : p ∼ q iff p and q can be joined by a smooth curve. Claim:
this is an equivalence relation. The only non-trivial property is transitivity. Assume p ∼ q and
q ∼ r, and let γ1 join p to q and γ2 join q to r. WOLOG γ1 : [a, b] → M and γ2 : [b, c] → M with
γ1(a) = p, γ1(b) = q = γ2(b) and γ2(c) = r. Let γ̃ : [a, c]→M be the continuious piece-wise smooth
curve agreeing with γ1 on [a, b] and with γ2 on [b, c]. Using a smooth coordinate chart centered at
q, modify γ̃ in a small neighborhood of b to yield a smooth curve γ : [a, c]→M joining p and r (it
is irrelevant if it does not pass by q). This proves transitivity.

Now pick p ∈ M and let Cp be the equivalence class of p. We claim that Cp is open. Indeed let
q ∈ Cp and φ : U → Rn a coordinate chart containing q with φ(U) a Euclidean ball. Since any two
points in a Euclidean ball can be joined by a smooth curve (say a straight line segment) the same
is true for U , and by transitivity U ⊂ Cp. Therefore the equivalence classes of ∼ partition M into
open sets, and since M is connected there is only one equivalence class.

Problem 2.- On vector fields:

(1) Let X ∈ X(M), and assume that ∃ε > 0 such that ∀p ∈M the integral curve of X through
p is defined ∀t ∈ (−ε, ε). Prove that X is complete.

(2) Use (1) to show that every vector field on a compact manifold is complete.

Solution:
(1) Arguing by contradiction, assume ∃p ∈ M such that the domain I ⊂ R of the maximal

integral curve γp : I →M of X starting at p is bounded above, let β = sup I be the upper endpoint
of I. Let T = β − ε/2 and let q = γp(T ). Define a curve γ̃ : (−ε, β + ε/2)→M by:

γ̃(t) :=

{
γp(t) if t ∈ (−ε, β)

γq(t− T ) if t ∈ (T, β + ε/2)

where we use that the integral curve γq is defined on (−ε, ε). Both curves on the right-hand side
of this definition are integral curves of X that agree on the overlap of their domains, by the group
law of the flow φ of X:

γq(t− T ) = φt−T (q) = φt−T (φT (p)) = φt(p) = γp(t).

Therefore (by uniqueness of integral curves) γ̃ is an integral curve of X starting at p. However
β + ε/2 > β, which contradicts the definition of β.

(2) Let X ∈ X(M) with M compact. By the existence theorem of integral curves, ∀p ∈ M ∃Up

neighborhood of p and ∃εp > 0 such that ∀q ∈ Up the integral curve of X starting at p exists ∀t ∈
(−εp, εp). Let Up1 , . . . , UpN

be a finite subcover of the cover {Up}p∈M . Then ε := min{εp1 , . . . , εpN
}

and X satisfy the hypothses of (1), and therefore X is complete.

Problem 3.- Two unrelated questions on Lie groups:
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(1) Let U ⊂ G be a neighborhood of the identity where G is a Lie group. Show that there
exists V a neighborhood of the identity such that V ⊂ U and ∀g, h ∈ V gh−1 ∈ U .

(2) Show that every Lie group G is orientable, and that not all orientable manifolds admit a
Lie group structure.

Solution:
(1) Consider the map F : G × G → G given by F (g, h) = gh−1. This is a smooth (and

therefore continuous) map, and F (e, e) = e where e is the identity. By continuity, there exists a
neighborhood W ⊂ G × G of (e, e) such that F (W ) ⊂ U . By definition of the product topology,
∃V ′ ⊂ G a neighborhood of the identity such that V ′ × V ′ ⊂W . Now let V = V ′ ∩ U .

(2) Let G be a Lie group of dimension n and ∀g ∈ G, let Lg : G → G be left-translation by g,
that is Lg(k) = gk. Pick νe ∈

∧n
g∗ \ {0}, and ∀g ∈ G define νg = L∗g−1νe ∈

∧n
T ∗gM . Then ν is a

smooth non vanishing top-degree form on G, which shows that G is orientable.
OR: Pick e1, . . . , en a basis of g and extend them to left-invariant vector fields E1, . . . , En on G.

Evaluating these fields at each g ∈ G yields a basis of TgG. Define an orientation of G by declaring
these basis to be positive.

For the converse, use that any Lie group has plenty of non-vanishing smooth vector fields: Any
non-zero left-invariant field, for example. Such fields do not exist e.g. on S2, which is orientable
nonetheless.

Problem 4.- Let α be a smooth one-form on M . Assume that ∀p ∈M αp 6= 0.

(1) Show that N := {(p, v) ∈ TM | αp(v) = 0} is a submanifold of the tangent bundle TM .
(2) Assume that dα = 0. Prove that ∀p ∈ M there exists a regular submanifold S ⊂ M such

that p ∈ S and ∀q ∈ S TqS = kerαq.

Solution:
(1) Let (x1, . . . , xn) be coordinates on an open set U ⊂ M , and (x1, . . . , xn, v1, . . . vn) be the

associated coordinates on TU . Let α =
∑

j aj(x)dxj . Then N ∩ TU is defined by the equation∑
j

aj(x)vj = 0,

that is, N ∩ TU is the zero level set of the function F (x, v) =
∑

j aj(x)vj , F : TU → R. The
Jacobian of this function is

(∇xF, a1(x), . . . , an(x))
T

which is nowhere zero since α does not vanish. By the regular value theorem N ∩TU is a subman-
ifold.

(2) Let p ∈ M and U a neighborhood of p diffeomorphic to a Euclidean ball. By the Poincaré
lemma, ∃f ∈ C∞(U) such that α|U = df . Since α does not vanish, f has no critical points,
and every c ∈ R is a regular value of f . Let S = f−1(c), where c = f(p). Then S is a regular
submanifold, p ∈ S and ∀q ∈ S TqS = ker dfq = kerαq.

Problem 5.- Let f : M × W → R be a smooth function, where W ⊂ Rk is open. For each
(p, w) ∈M ×W , define the partial differential dMf(p,w) ∈ T ∗pM by

dMf(p,w)(γ̇(0)) =
d

dt
f(γ(t), w)|t=0

for each smooth curve γ : (−ε, ε)→M such that γ(0) = p.



Assume that zero is a regular value of the map Φ : M ×W → Rk defined as

Φ(p, w) =

(
∂f

∂w1
(p, w), . . . ,

∂f

∂wk
(p, w)

)
.

(1) Let C := Φ−1(0). Explain why C is a submanifold and compute its dimension. If (p, x) ∈ C
and (x1, . . . , xn) are coordinates in a neighborhood of p, write equations for the components
(α1, . . . , αn, β1, . . . , βk) of vectors in T(p,w)C in the coordinates (x1, . . . , xn, w1, . . . , wk).

(2) Show that the map

F : C → T ∗M, F (p, w) =
(
p, dMf(p,w)

)
is an immersion.

Solution:
(1) The regular value theorem immediately implies that C is a submanifold of M ×W , and that

if (p, w) ∈ C then
T(p,w)C = ker dΦ(p,w).

By assumption the rank of dΦ(p,w) is k, and therefore its kernel has dimension n+ k − k = n, so C
has the same dimension as M .

Introduce coordinates (x1, . . . , xn) in a neighborhood of p. Then the matrix of dΦ(p,w) (the
Jacobian) is

J :=
(
fwx fww

)
,

where fwx is the matrix fwx =
(

∂2f
∂xiwj

)
, and similarly for fww. A tangent vector

∑
αi∂xi +

∑
βj∂wj

is in T(p,w)C iff
fwxα+ fwwβ = 0.

(2) Consider the extension F̃ : M ×W → T ∗M of F given by the same expression as F . In
coordinates,

F̃ (x,w) =

(
x,
∂f

∂xi
(x,w)

)
,

and therefore the Jacobian matrix of F̃ is

K :=

(
In 0
fxx fxw

)
.

Since F = F̃ ◦ ι where ι : F ↪→M ×W is the inclusion, the kernel of dF(p,w) is the space of vectors

in T(p,w)C that are in the kernel of F̃ . Therefore, the components of the vectors in ker dF(p,w) are
the intersection of the kernels of the matrices J and K. Computing using column vectors α ∈ Rn,
β ∈ Rk:

J

(
α
β

)
= fwxα+ fwwβ, K

(
α
β

)
=

(
α

fxxα+ fxwβ,

)
we see that the joint kernel has for equations α = 0, fwwβ = 0 and fxwβ = 0. Thus the equation
on β is

JTβ = 0.

Since J is onto, JT is 1-1 and this equation implies that β = 0. Therefore ker dF(p,w) = 0, i.e. F is
an immersion.


