
Algebraic Topology QR Exam – August 2021

1. Let n ≥ 0. Let CPn denote complex projective n-space, and let x0 ∈ CPn be a fixed basepoint.
Let S1 denote the circle, and let y0 ∈ S1 be a fixed basepoint. Give an explicit proof that every
based map

f : (CPn, x0)→ (S1, y0)

is nullhomotopic via a basepoint-preserving homotopy, i.e., a homotopy ft satisfying ft(x0) = y0

for all t.

2. Let Fn denote the free group on n letters {a, b, c, . . .}.

(a) Prove that F4 does not have a finite-index subgroup isomorphic to F8.

(b) Construct a finite-index subgroup H of F4 isomorphic to F7. Determine (explaining your
steps) a free generating set for H, and explain whether H is normal.

3. Fix n ≥ 1. Let Sn denote the n-sphere, and let f : Sn → Sn be a (non-identity) deck trans-
formation associated to a certain covering space map Sn → X. What can you say about the
degree of f as a map Sn → Sn?

4. Fix d ≥ 1. Let X denote a d-dimensional ∆-complex, and suppose that X is homotopy equivalent
to a d-sphere. Let Y denote the (d− 1)-skeleton of X. Prove that

H̃i(Y ) = 0 for i 6= d− 1

and H̃d−1(Y ) is generated by cycles equal to the boundaries of d-simplices of X,

{∂∆i | ∆i a d-simplex of X} ⊆ Cd−1(Y ).

5. A space X is constructed from two polygons with the following edge identifications. Compute
the homology of X.
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Solutions

These solutions may include more detail than is necessary for full points.

1. Let p : R → S1 be the universal covering map, and let r0 ∈ p−1(y0) be any choice of
preimage of the basepoint. We will invoke the lifting criterion for covering spaces,

Theorem. Suppose p : (Ỹ , r0) → (Y, y0) is a covering space map, and sup-
pose f : (X,x0) → (Y, y0) a based map with X path-connected and locally
path-connected. Then a lift f̃ : (X,x0) → (Ỹ , r0) of f exists if and only if
f∗(π1(X,x0)) ⊆ p∗(π1(Ỹ , r0)).

Since CPn is a connected CW complex, it is path-connected and locally path-connected.
Since π1(CPn) = 0 for all n, the condition on fundamental groups is vacuously satisfied.
Thus we have a map

f̃ : (CPn, x0)→ (R, r0)

such that p ◦ f̃ = f . Let ht : R → R be straight-line homotopy from idR to the constant
map at r0,

ht(r) = r0 + (1− t)(r − r0)

Notably, ht(r0) = r0 for all t. Then define

ft(x) = p ◦ ht ◦ f̃(x).

(R, r0)

(CPn, x0) (S1, y0)

p

ht

f̃

f

Then when t = 0,

f0(x) = p ◦ h0 ◦ f̃(x) = p ◦ idR ◦ f̃(x) = f(x) for all x.

When t = 1,
f1(x) = p ◦ h1(f̃(x)) = p(r0) = y0 for all x.

When x = x0,

ft(x0) = p ◦ ht ◦ f̃(x0) = p ◦ ht(r0) = p(r0) = y0 for all t.

Thus ft is a basepoint-preserving nullhomotopy as desired.

2(a). We will use covering space theory to show that every finite-index subgroup of F4 must be a
free group with rank congruent to 1 mod 3. In particular, F8 is not a finite-index subgroup
of F4.

We can realize F4 as the fundamental group of the wedge

X = S1 ∨ S1 ∨ S1 ∨ S1.

The classification of covering spaces then states that any index-d subgroup H of F4 must
be the fundamental group of some degree-d cover X̃ of X.

Approach one: Since X is a graph with 1 vertex and 4 edges, the cover X̃ has the structure
of a graph with d vertices and 4d edges. The graph X̃ is homotopy equivalent to a wedge

2



of circles, via the quotient collapsing a maximal tree. A tree with d vertices has (d − 1)
edges. Hence, X̃ is homotopy equivalent to a wedge of

4d− (d− 1) = 3d+ 1

circles, and π1(X̃) is a free group of rank 3d+ 1.

Approach two: Recall that the Euler characteristic of a finite graph G is

χ(G) = #vertices−#edges.

A wedge W of n circles has fundamental group π1(W ) ∼= Fn and Euler characteristic
χ(W ) = 1−n. Thus π1(W ) ∼= F−χ(W )+1. Fundamental group and Euler characteristic are
homotopy invariants, and every graph is homotopy equivalent to a wedge of circles, so the
formula

π1(G) ∼= F−χ(G)+1

holds for every finite graph G. In particular, χ(X̃) = dχ(X) = −3d, and

π1(X̃) ∼= F3d+1.

2(b). Let X = S1 ∨ S1 ∨ S1 ∨ S1.

a

bc

d

Any connected degree-2 cover X̃ of X will have fundamental group F7. The data of a
degree-2 cover is a directed graph with 8 edges and 2 vertices, such that each vertex has
in-degree 4 and out-degree 4. Two edges should be labelled by each of a, b, c, d such that
each vertex has one incoming and one outgoing edge with each label. Some examples are
given below (orientations not shown).

aa

d d

c
c

b
ba

a
b
b

c
c
d
d

To find a generating set for the fundamental group: choose a maximal tree T (in this case,
a single edge spanning the two vertices) to collapse. The quotient is a wedge of 7 circles and
the quotient map is a homotopy equivalence. Choose a vertex in X̃ to be the basepoint.
Choose a based preimage in X̃ of each of the 7 circles in X̃/T ; these loops freely generate
π1(X̃). The image of these generators in X are free generators for H.

For example, if we choose the following cover and maximal tree, and left vertex as basepoint,

aa

d d

collapse

c

b
b
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we obtain free generating set

H = 〈a, d, c2, cb, cb−1, cac−1, cdc−1〉.

Since H is the image of the fundamental group of a connected degree-2 cover, it has index
2 in F4, and hence is necessarily normal. We can also see this by verifying that the cover
is a regular cover: there is a deck transformation of the cover (a graph automorphism pre-
serving directed, labelled edges) that interchanges the two vertices. Thus the deck group
acts transitively on fibers, the cover is regular, and the image of its fundamental group is
normal in π1(X).

3. We will show that the degree of f is (−1)n+1.

First we claim that, since f is a non-identity deck transformation, it has no fixed points.
Recall that, if p : X̃ → X is a covering space map, then a deck transformation is a
homeomorphism f : X̃ → X̃ such that p ◦ f = p.

Recall that covering spaces satisfy the unique lifting property :

Proposition. Given a covering space p : X̃ → X and a map g : Y → X , if two
lifts f1, f2 : Y → X of g agree at one point of Y and Y is connected, then f1 and
f2 agree on all of Y .

If we take g : Y → X to again be the covering map p : X̃ → X, then a deck map f : X̃ → X̃
is a lift of p, and the unique lifting property implies that f is determined by its value at
any single point. In particular, if f fixes a point then it must be the identity map.

So we conclude that our non-identity deck map f has no fixed points. This allows us to
compute its degree.

Approach one: Lefschetz fixed point theorem. Because the sphere Sn has the structure of a
compact manifold (and, in fact, a finite CW complex), the Lefschetz Fixed Point Theorem
applies to maps Sn → Sn. Because our map f : Sn → Sn has no fixed points, the theorem
states that it must have Lefschetz number 0,

0 =

∞∑
i=0

(−1)i Trace
(
f∗ : Hi(S

n)→ Hi(S
n)
)
.

The space Sn has nonzero homology groups only in degrees 0 and n, and by assumption
n 6= 0. Hence

0 = Trace
(
f∗ : H0(Sn)→ H0(Sn)

)
+ (−1)n Trace

(
f∗ : Hn(Sn)→ Hn(Sn)

)
Since n ≥ 1, the sphere Sn is path-connected. Thus H0(Sn) ∼= Z and the map f must

induce the identity map on H0(Sn). Then Trace
(
f∗ : H0(Sn)→ H0(Sn)

)
= 1, and

0 = 1 + (−1)n Trace
(
f∗ : Hn(Sn)→ Hn(Sn)

)
−1 = (−1)n Trace

(
f∗ : Hn(Sn)→ Hn(Sn)

)
(−1)n+1 = Trace

(
f∗ : Hn(Sn)→ Hn(Sn)

)
The induced map f∗ on the rank-one group Hn(Sn) ∼= Z can be represented by a 1 × 1
matrix; the matrix’s single entry is both the trace of f∗ and (by definition) the degree of
the map f . We conclude that f has degree (−1)n+1.

4



Approach two: homotopy to the antipodal map. Since f has no fixed points, we will show
that it is homotopic to the antipodal map A. View Sn as the unit sphere in Rn+1, so A is
defined to be the map

A : Sn −→ Sn

x 7−→ −x.

Since f has no fixed points, the denominator in the following formula is non-vanishing, and
the formula gives a continuous homotopy from f to A.

Ft(x) =
(1− t)f(x)− tx
||(1− t)f(x)− tx||

But, the antipodal map can be written as a product of (n + 1) reflections, which (by a
direct calculation) each have degree −1. Since degree is homotopy invariant, we conclude
that f has degree (−1)n+1.

4. Approach one: the long exact sequence of a pair. Since Y is a closed subcomplex of the
∆-complex X, the pair (X,Y ) is what Hatcher calls a good pair, and the relative homology

groups H∗(X,Y ) are equal to the reduced homology of the quotient H̃∗(X/Y ).

Because X is a ∆-complex of dimension d and Y is its (d− 1)-skeleton, the quotient X/Y
is homotopy equivalent to a wedge of d-spheres, with one d-sphere given by the image of
each d-simplex ∆i of X. The simplices ∆i ∈ Cd(X,Y ) are themselves relative cycles that
freely generate the degree-d homology group.

Hi(X,Y ) = H̃i(X/Y ) =

{
0, i 6= d⊕

∆i a d-simplex of X Z{∆i}, i = d.

[This description of H∗(X,Y ) is a standard result that is used, for example, in the proof
that cellular and singular homology agrees.]

Since X is homotopy equivalent to a d-sphere,

H̃i(X) = 0 for i 6= d.

Then, for i ≤ d− 2, the long exact sequence of a pair

· · · Hi+1(X,Y ) H̃i(Y ) H̃i(X) Hi(X,Y ) · · ·

0 0

∂ ∂

implies that H̃i(Y ) = 0 for i ≤ d − 2. When i ≥ d then H̃i(Y ) = 0 because Y is a
(d− 1)-dimensional complex.

When i = d− 1,

· · · Hd(X,Y ) H̃d−1(Y ) H̃d−1(X) Hd−1(X,Y ) · · ·

⊕
∆i a d-simplex of X Z{∆i} 0

∂ ∂
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by exactness the connecting homomorphism ∂ surjects, and H̃d−1(Y ) is equal to the image
of

Hd(X,Y ) =
⊕

∆i a d-simplex of X

Z{∆i}

under ∂. But the connecting homomorphism acts by taking a relative cycle α ∈ Ci(X,Y )

to its boundary ∂α ∈ Ci−1(Y ), so in this case the image of H̃d−1(Y ) is generated by the
cycles

{∂∆i | ∆i a d-simplex of X},

as claimed.

Approach two: direct analysis of the chain complexes. View the augmented simplicial chain
complex C∗(Y ) as a sub-chain complex of the augmented simplicial chain complex C∗(X).

0 Cd(X) Cd−1(X) Cd−2(X) · · · C1(X) C0(X) Z 0

0 0 Cd−1(Y ) Cd−2(Y ) · · · C1(Y ) C0(Y ) Z 0

∂X
d

∂X
d−1 ∂X

d−2 ∂X
2 ∂X

1

∂Y
d

∂Y
d−1 ∂Y

d−2 ∂Y
2 ∂Y

1

For i ≤ d − 2, we have equality of maps (including equality of domains and codomains)
∂Xi+1 = ∂Yi+1 and ∂Xi = ∂Yi ,

Ci+1(X) Ci(X) Ci−1(X)

Ci+1(Y ) Ci(Y ) Ci−1(Y )

∂X
i+1 ∂X

i

∂Y
i+1 ∂Y

i

so H̃i(Y ) = H̃i(X) for i ≤ d − 2. Since X is homotopy equivalent to a d-sphere, these
groups vanish.

When i ≥ d > dim(Y ), the simplicial chain groups Ci(Y ) vanish and H̃i(Y ) = 0.

Let i = d − 1. Since X is homotopy equivalent to a d-sphere, H̃d−1(X) = 0 and the
simplicial chain complex C∗(X) is exact at Cd−1(X). This means that the kernel of ∂Xd−1 is

equal to the image of ∂Xd . By definition of the boundary map this image of ∂Xd is generated
by {∂∆i | ∆i a d-simplex of X}.
Since Cd(Y ) = 0, the homology of the chain complex C∗(Y ) at Cd−1(Y ) is equal to

ker(∂Yd−1) = ker(∂Xd−1),

and we conclude that H̃d−1(Y ) is the submodule of Cd−1(Y ) = Cd−1(X) spanned by
{∂∆i | ∆i a d-simplex of X}.

5. The solution is:

H0(X) ∼= Z
H1(X) ∼= Z⊕ Z/2Z
H2(X) ∼= 0

Hi(X) ∼= 0 for all i ≥ 3.

The space X is a CW complex with two vertices x, y, four 1-cells a, b, c, d, and two 2-cells
A,B.

6



a

a a

c

c

c bb

bdd d

x

y
A

B

Its cellular chain complex is:

0 C2(X) C1(X) C0(X) 0

A a+ c− b+ c+ d− a+ d+ b = 2c+ 2d

B d+ c− b− a

a y − x

b x− y

c x− y

d y − x

∂2 ∂1

It is possible to compute the homology either by direct algebraic manipulation, or by using
row/column operations to put the matrices

∂2 =


0 −1
0 −1
2 1
2 1

 ∂1 =

[
−1 1 1 −1
1 −1 −1 1

]

into Smith normal form.

Approach one: direct manipulation. The space X is path-connected, so H0(X) ∼= Z.

The map ∂1 has rank 1 and so its kernel is a free abelian group of rank 3. By inspection,
the set {a, a+ b, b− c, c+ d} is a Z-basis for C1(X) with {a+ b, b− c, c+ d} ⊆ ker(∂1), so
{a+ b, b− c, c+ d} must be a basis for the kernel. Quotienting by image of ∂2 imposes the
relations 2(c+ d) = 0 and (c+ d) = (a+ b), and we conclude that the first homology group
is

H1(X) =
Z{a+ b, b− c, c+ d}

〈2(c+ d), (c+ d)− (a+ b)〉
∼= Z⊕ Z/2Z.

Observe that ∂2(mA+ nB) = (2m+ n)d+ (2m+ n)c− nb− na, (m,n ∈ Z), which is zero
in C1(X) only if m = n = 0. We conclude that ∂2 is injective and H2(X) = 0.

Approach two: Smith Normal Form.

SNF(∂2) =


1 0
0 2
0 0
0 0

 SNF(∂1) =

[
1 0 0 0
0 0 0 0

]
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The solution follows frorm the formula

Hi(X) ∼= Zrank(Ci(X))−rank(∂i)−rank(∂i+1) ⊕
⊕

invariant factors αk of ∂i+1

Z/αkZ.

Note: X is not a surface (it has triples of edges glued together so it is not locally Euclidean),
and we cannot compute its homology using Euler characteristic / classification of surfaces
arguments.
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