THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Topology

January 5, 2019: Algebraic Topology

- 1. Let a quasi-torus mean a torus from which a small disk (standard disk in a coordinate neighborhood) has been removed. Now consider three quasitori T_1, T_2, T_3 . On each of their boundary circles, choose two distinct points $A_i, B_i, i = 1, 2, 3$, thus breaking up the boundary into two closed arcs $A_iB_i^+$ and $A_iB_i^-$. Now let X be a quotient of $T_1 \coprod T_2 \coprod T_3$ by attaching $A_1B_1^+$ to $A_2B_2^-$, $A_2B_2^+$ to $A_3B_3^-$, $A_3B_3^+$ to $A_1B_1^-$. Each pair of arcs is attached by identifying the arcs homeomorphically, with A_i going to A_j and B_i going to B_j . Compute the homology of X. Is X a topological manifold? If so, classify it.
- 2. Let S^1 be the unit circle in \mathbb{C} . Let Y be the space obtained from $S^1 \times [0,1] \times \{0,1\}$ (with the product topology, where each factor has the standard topology) by identifying $(z,0,0) \sim (z^3,0,1)$ and $(z,1,1) \sim (z^2,1,0)$. Calculate $\pi_1 Y$.
- 3. Let S_1, S_2 be two disjoint copies of the *n*-sphere, n > 1 fixed. Choose two distinct points $A_i, B_i \in S_i$. Let Z be a space obtained from $S_1 \coprod S_2$ by identifying $A_1 \sim A_2, B_1 \sim B_2$. Compute, with proof, the lowest possible number of cells in a CW-decomposition of Z.
- 4. Prove or disprove the following statement: Every compact surface whose universal cover is contractible has a regular cover of degree n for every $n \in \mathbb{N}$.
- 5. Is every (continuous) map from the real projective plane to the 2-sphere (with the standard topology) homotopic to a constant map? Prove your answer.

- 1. a) What are the possible one dimensional smooth connected manifolds (possibly with boundary) up to diffeomorphism? (No justification needed.)
- b) Give an example (with proof) of a homeomorphism $\mathbb{R} \to \mathbb{R}$ which is not a diffeomorphism.
- c)Construct a smooth structure R' on \mathbb{R} such that the identity function on \mathbb{R} is not a diffeomorphism, i.e. $(\mathbb{R}, R) \xrightarrow{\psi} (\mathbb{R}, R')$, such that $\psi_{\mathbb{R}} = id$, but ψ is not smooth.
- **2.** Given a function $f: \mathbb{R}^n \to \mathbb{R}^m$ which is smooth, show that

$$graph(f) = \{(x, f(x)) \in \mathbb{R}^{n+m} : x \in \mathbb{R}^n\}$$

is a smooth submanifold of \mathbb{R}^{n+m} .

- **3.** Let B^n be the n-dimensional ball and S^{n-1} (n-1 dimensional sphere) be the boundary of B^n . Is it possible to extend the identity map of S^{n-1} to a smooth map $B^n \to S^{n-1}$? Give an explicit map if possible, or prove it's impossible.
- **4.** Suppose that a finite group G acts smoothly on a compact manifold M and that the action is free (i.e. if $\forall x \in M, g \circ x = x$, then g is the identity in G).
- a) Show that M/G is a manifold.
- b) Show that $M \to M/G$ is a covering space.
- **5.** The special orthogonal group $SO(3) \subset M_3(\mathbb{R})$ is the collection of orthogonal matrices with determinant 1. Complete the following 4 steps (or find your own approach) to give a rigors construction of smooth coordinate charts on SO(3)
- a) Define $exp(A) := \sum_{n=0}^{\infty} \frac{A^n}{n!} = 1 + A + A^2/2! + \cdots$. Prove that exp(A) always converges, so that it's a map from $M_3(\mathbb{R})$ to $M_3(\mathbb{R})$.
- b) Show that exp is injective on some neighbourhood of the zero matrix in $M_3(\mathbb{R})$. (Hint: You may assume that exp is smooth and use inverse function theorem.)
- c) Prove if B is skew-symmetric, i.e. $B^{\top} = -B$, then $exp(B) \in SO(3)$.
- d) Show that exp restricted to the space of skew-symmetric matrices is a surjective map (smooth submersion) onto SO(3). (Hint: Euler's rotation theorem says that every 3-dim rotation has an axis.) Hence this gives SO(3) a smooth chart.