Topology Qualified Exam (Differential Part) at May, 2018

May 8, 2018

- **1.** Let $M^m \subset \mathbb{R}^n$ be a smooth submanifold of dimension m < n 2. Show that its complement $\mathbb{R}^n \setminus M$ is connected and simply connected.
- **2.** Let α be a closed differential two-form on S^4 . Prove that $\alpha \wedge \alpha$ vanishes at some point.
- **3.** Show that the real cubic surface defined by $S=\{[x:y:z:w]\in\mathbb{R}P^3:x^3+y^3+z^3+w^3=0\}$ is an embedded submanifold of $\mathbb{R}P^3$, and compute its (real) dimension.
- **4.** Consider the following subgroup H of $GL_2(\mathbb{R})$:

$$H = \{ h \in GL_2(\mathbb{R}), h = \begin{pmatrix} u & v \\ 0 & 1 \end{pmatrix}, u > 0, v \in \mathbb{R} \}.$$

Show that the vector fields $u\frac{\partial}{\partial u}$ and $u\frac{\partial}{\partial v}$ form a basis of the Lie algebra $\mathfrak h$ of H.

- **5.** Let M be a smooth manifold and $C \subset O \subset M$, where C is a closed subset and O is an open subset. Let $f: C \to \mathbb{R}$ be a smooth function, which means $\forall p \in C$, \exists an open set $p \in V_p \subset M$ and a smooth function $\hat{f}_p: C \to \mathbb{R}$ s.t. $\hat{f}_p|_{C \cap V_p} = f|_{C \cap V_p}$.
- **a.** Show that there is a smooth function $\hat{f}: M \to \mathbb{R}$, such that $\hat{f}|_C = f$ and $supp(\hat{f}) \subset O$.
- **b.** If the set C is not assumed to be closed, then does the statement of part a) still hold? If yes, give the proof; and if not, give a counterexample.

THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Topology

May 2018 Algebraic Topology

- 1. Let X be the space obtained by removing the open square in \mathbb{R}^2 with vertices (11), (12), (21), (22) from the closed square with vertices (00), (03), (30), (33). Now let X be the space obtained by identifying the following pairs of line segments, direction indicated, via affine bijective maps:
 - (00), (03) with (21), (22),
 - (30)(33) with (11), (12),
 - (00), (30) with (22), (12),
 - (03), (33) with (21), (11).
 - (a) Calculate $\pi_1(X)$.
 - (b) Prove that X is a compact surface, and classify it.
- 2. For which $n \in \mathbb{N}$ does there exist a CW structure on $\mathbb{C}P^{2n}$ with no cell in dimension 2n? Prove your answer.
- 3. Let

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1\},$$

$$D^{3} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} \leq 1\},$$

Let $f: S^2 \to S^2$ be a (continuous) map of degree k. Let X be the pushout of the diagram

Calculate the homology of X.

4. Consider the 1-point compactification $X = \mathbb{R}^3 \cup \{\infty\}$ of \mathbb{R}^3 . Now let $\mathbb{Z}/2$ act on X where the generator sends $x \mapsto -x$ for $x \in \mathbb{R}^3$, and $\infty \mapsto \infty$. Let Y be the orbit space of X with the quotient topology. How many non-isomorphic connected covering spaces (in the unbased sense) does Y have? Prove your answer.

5. Let X be the pushout of the diagram

where f is the projection to the first coordinate composed with a map of degree k, and g is the projection to the second coordinate composed with a map of degree ℓ . Compute $\pi_1(X)$.