SEPTEMBER 2017

SOLUTIONS

1. Show that

$$\omega = \frac{-y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy$$

defines a nonzero deRham cohomology class of $\mathbb{R}^2 \setminus \{0, 0\}$.

Solution: We need to show ω is closed but not exact. Computing the exterior derivative gives

$$d\omega = \left(\frac{\partial}{\partial x}\frac{x}{x^2 + y^2} - \frac{\partial}{\partial y}\frac{-y}{x^2 + y^2}\right)dx \wedge dy$$

=
$$\left(\frac{(x^2 + y^2) - 2x^2 + (x^2 + y^2) - 2y^2}{(x^2 + y^2)^2}\right)dx \wedge dy$$

= 0,

so ω is closed.

To show ω is not exact, we integrate ω around the unit circle C, which we will parametrize by $f(t) = (\cos(t), \sin(t))$ from t = 0 to 2π . It suffices to show the integral $\int_C \omega \neq 0$. Indeed, if ω were exact, then $\omega = dg$ for some smooth function g and then Stokes' theorem would give $\int_C dg = \int_{\partial C} g = 0$ since C has no boundary.

We have

$$f^*dx = -\sin(t)dt$$
$$f^*dy = \cos(t)dt.$$

Writing x, y, dx, dy in terms of t, we get

$$\int_{C} \omega = \int_{0}^{2\pi} \sin^{2}(t) + \cos^{2}(t) \, dt = 2\pi \neq 0.$$

Therefore, ω is not exact.

2. Any non-constant smooth function of a compact connected manifold has at least two critical points.

Solution: Let M be a compact connected manifold and let $f : M \to \mathbb{R}$ be a smooth function. Since M is compact and f is continuous, the function f must achieve both a maximum and minimum value on M. Suppose p is such that f(p) is the maximum value of f. We claim f has a critical point at p. To see this, let $\gamma : (-\varepsilon, \varepsilon) \to M$ be a curve with $\gamma(0) = p$ (this is assuming M has no boundary, which is necessary or else f(x) = x on [0, 1]is a counter-example to the statement of the problem). Suppose for contradiction $\gamma'(t) \neq 0$. If $\gamma'(t) > 0$ then there is small enough t > 0 so that $f(\gamma(t)) > f(p)$ and if $\gamma'(0) < 0$, there is t > 0 so that $f(\gamma(-t)) > f(p)$, contradicting the maximality of f(p). A similar argument

SOLUTIONS

shows that if $q \in M$ is such that f(q) is the minimum value at f, then f must have a critical point at q.

3. For each $n \geq 1$, there is a diffeomorphism $(TS^n) \times \mathbb{R} \cong S^n \times \mathbb{R}^{n+1}$.

Solution: View S^n as $\{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} | x_1^2 + \cdots + x_n^2 = 1\}$. Let N_p be the normal vector field to S^n , i.e. associate to each $p = (x_1, \ldots, x_{n+1}) \in \mathbb{R}^n$ the vector (x_1, \ldots, x_{n+1}) . Define

$$F: (TS^n) \times \mathbb{R} \to S^n \times \mathbb{R}^{n+1}$$
$$(p, v, \alpha) \mapsto (p, v + \alpha N_p).$$

This map is clearly smooth. It is bijective because any $w \in \mathbb{R}^{n+1}$ can be decomposed uniquely as $w = w_1 + w_2$ where w_1 is in the direction of N_p and w_2 is in the direction normal to N_p , i.e. in the direction of T_pS^n .

4. Assuming that every *n*-dimensional compact manifold M^n can be embedded into some \mathbb{R}^N , prove that we can choose N = 2n + 1. (Hint: Given a nonzero vector $v \neq 0$ in \mathbb{R}^N , once can define a parallel projection ϕ_v from \mathbb{R}^N to the orthogonal complement of v. If N > 2n + 1, we can choose some v so that $\phi_v|_{M^n}$ is an embedding.)

Solution: We need to choose v so that ϕ_v is an injective immersion.

Injective: In order for ϕ_v to be injective, we need the line tv to pass through at most one point on M. Define

$$F: M \times M \setminus \Delta \to \mathbb{R}P^{N-1}$$
$$(p,q) \mapsto [p-q].$$

If F(p,q) = [v], then the line tv will pass through both p and q, which means ϕ_v is not injective. If [v] is not in the image of F, then the fiber of ϕ_v contains at most one point, i.e. ϕ is injective. We claim the image of F has measure 0 so long as $2n = \dim(M \times M \setminus \Delta) > \dim(\mathbb{R}P^{N-1}) = N - 1$. Indeed, if the dimensions satisfy this inequality, F cannot have any regular values, so every value of F must be a critical value. The set of critical values has measure 0 by Sard's theorem.

Immersion: In order for ϕ_v to be an immersion, we must have $d\phi_v$ is injective on tangent spaces. Since ϕ_v is linear, its derivative is itself. For the projection ϕ_v to be injective on tangent spaces, we must have that v is not parallel to any vector tangent to M. Define

$$G: TM \setminus \{(p,0) | p \in M\} \to \mathbb{R}P^{N-1}$$
$$(p,w) \mapsto [w].$$

If v is not in the image of G, then v is not parallel to any vector tangent to M. Again, by Sard's theorem, the image of G has measure 0 so long as $2n = \dim(TM) > \dim(\mathbb{R}P^{N-1}) = N-1$.

In conclusion, if 2n > N - 1, we can choose v so that $[v] \in \mathbb{R}P^{N-1}$ is not in the image of F or G, guaranteeing the projection ϕ_v is an injective immersion, and hence an embedding.

(1) Show that the space of orthogonal matrices

$$O(n) = \{A \in M_{n \times n}(R) \mid AA^T = Id\}$$

is a smooth submanifold of $M_{n \times n}(\mathbb{R})$.

Solution: Let S(n) denote the space of $n \times n$ real symmetric matrices. Consider the function

$$F: M_{n \times n}(\mathbb{R}) \to S(n)$$
$$A \mapsto AA^{T}.$$

By the regular value theorem, it suffices to show Id is a regular value of F. To this end, we compute the derivative

$$DF_A: T_A M_{n \times n}(\mathbb{R}) \to T_{Id}S(n)$$

for any $A \in O(n)$ and show it is surjective. Note we can identify $T_A M_{n \times n}(\mathbb{R}) \cong$ $M_{n \times n}(\mathbb{R})$ and $T_F(A)S(n) \cong S(n)$. Let $B \in T_A M_{n \times n}(\mathbb{R}) \cong M_{n \times n}(\mathbb{R})$. Then

$$DF_A(B) = \frac{d}{dt}|_{t=0} F(A+tB)$$

= $\frac{d}{dt}|_{t=0} (A+tB)(A+tB)^T$
= $\frac{d}{dt}|_{t=0} AA^T + t(AB^T + BA^T) + t^2(BB^T)$
= $AB^T + BA^T$.

To see DF_A is surjective onto symmetric matrices, note that we can write any symmetric matrix X as $P + P^T$, where P is upper triangular. (Indeed, take the super diagonal entries of P to be the same as A, and take the diagonal entries of P to be one half times the diagonal entries of A). Then given P and A, we can solve the equation $P = AB^T$ for B, since we are assuming $A \in O(n)$ and so A is invertible because $A^{-1} = A^T$. This shows DF_A is surjective as desired.

(2) Verify that the tangent space at the identity matrix

$$o(n) = \{A \in M_{n \times n}(\mathbb{R}) \mid A + A^T = 0\}.$$

Solution: First we claim these two vector spaces have the same dimension. The dimension of the right hand side is $\frac{n^2-n}{2}$, since we are free to specify the upper-triangular part of the matrix A. To compute the dimension of the lefthand side, we can use the regular value theorem. Since $O(n) = F^{-1}(Id)$ with F defined as above, we know $O(n) \subset M_{n \times n}(\mathbb{R})$ is a smooth submanifold with codimension equal to dim $S(n) = \frac{n^2 - n}{2} + n$. Hence dim $O(n) = \dim o(n) = n^2 - \dim S(n) = \frac{n^2 - n}{2}$. Next, suppose $\gamma(t)$ is a curve in O(n) with $\gamma(0) = Id$, so $\gamma'(0) \in o(n)$. Then

$$F(\gamma(t)) = Id.$$

Differentiating both sides with respect to t and using the chain rule gives

$$DF_{Id}(\gamma'(0)) = 0$$

This means

$$o(n) \subset \ker DF_{Id} = \{A \in M_{n \times n}(\mathbb{R}) \mid A + A^T = 0\}$$

Since these two vector spaces have the same dimension, the only way for one of them to be a subset of the other is if they are the same.

(3) Show that the tangent bundle TO(n) can be trivialized, i.e.

 $TO(n) \cong O(n) \times o(n).$

Solution: Let $(g, v) \in TO(n)$, i.e. $g \in O(n)$ and $v \in T_gO(n)$. Let $L_{g^{-1}}$ denote left multiplication by g^{-1} . This map is a diffeomorphism, so its derivative at g

$$D_g L_{g^{-1}}: T_g O(n) \to T_{Id} O(n) = o(n)$$

is a linear isomorphism. Let

$$\begin{split} \Phi: TO(n) &\to O(n) \times o(n) \\ (g,v) &\mapsto (g, D_g L_{g^{-1}}(v)) \end{split}$$

Then Φ is a diffeomorphism.