THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Topology

May 5, 2017: Morning Session, 9:00 to 12:00 noon.

1. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$f\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 + 2xy + y^2 \\ 1 + 2xy + x^2 \end{array}\right).$$

- (a) Prove that $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a regular value of f.
- (b) Prove that there exist $K > 0, \epsilon > 0$ such that for all $z \in \mathbb{R}^2$, $||z|| \ge K$ implies $||f(x)|| \ge \epsilon$.
- (c) Thus, we can define a map

$$g:S^2\cong \mathbb{R}^2/\{z\in \mathbb{R}^2\mid ||z||\geq K\}\rightarrow \mathbb{R}^2/\{z\in \mathbb{R}^2\mid ||z||\geq \epsilon\}\cong S^2$$

by $g: z \mapsto f(z)$. Calculate the degree of g, assuming we choose the homeomorphisms with S^2 in such a way that the map $z \mapsto z$ has degree 1.

2. Let $X = \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 \mid y = 0 \text{ and } x^2 + z^2 = 1\}$. Prove that the differential form

$$\frac{2(1-x^2+y^2-z^2)dy+4xydx+4yzdz}{(1-x^2-y^2-z^2)^2+4y^2}$$

represents a nonzero element of $H^1_{DR}(X)$.

- 3. (a) Prove that the set of all $n \times n$ diagonalizable real matrices with given eigenvalues and multiplicities is a smooth submanifold of \mathbb{R}^{n^2} .
 - (b) Prove that the set of all 2×2 real matrices with double eigenvalue 0 is not a smooth submanifold of \mathbb{R}^4 .
- 4. Is the set of all points in \mathbb{R}^3 satisfying the equations

$$y^3 + x^2 + z^4 = 3,$$

$$xyz = 1$$

a smooth submanifold of \mathbb{R}^3 ? Explain.

5. Prove or disprove the following statement: If $f: M \to N$ is a smooth diffeomorphism of smooth manifolds and u, v are vector fields on M, then [Df(u), Df(v)] = Df([u, v]).

THE UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review examination in Topology

May 5, 2017: Afternoon Session, 2:00 to 5:00.

- 1. Let X be a connected CW-complex whose fundamental group is Σ_3 , the group of all permutations on 3 elements.
 - (a) How many isomorphism classes of objects are there in the category $Cov_0(X)$ of connected covering spaces of X and continuous maps commuting with the covering map?
 - (b) How many isomorphism classes of objects of $Cov_0(X)$ have degree 2?
 - (c) How many isomorphism classes of objects of $Cov_0(X)$ are regular coverings?
- 2. Let X be a connected CW-complex such that $H_i(X) = 0$ for all i > 0. Let S^k denote the k-sphere. Prove that for all $k \in \mathbb{N}$, $H_n(X \times S^k)$ is \mathbb{Z} for n = 0 and n = k, and 0 for all other values of n.
- 3. Let F be the free group on a, b. Let $G = \{1, x, x^2\}$ be the cyclic group on three generators written multiplicatively. Let $h: F \to G$ be a homomorphism which sends $a \mapsto x, b \mapsto x^2$. Find free generators of Ker(h).
- 4. For which connected compact surfaces X without boundary does there exist a continuous map $f: X \to X$ with no fixed point? [Hint: Verify by inspection that if \mathbb{Z} is a direct summand of $H_1(X)$, then S^1 is a retract of X.]
- 5. Let S^1 be the set of complex numbers of absolute value 1 with the induced topology. K be the quotient space formed from $S^1 \times [0,1]$ by identifying every point (z,0) with the point $(z^{-2},1)$. Compute the homology of K.