Topology QR Exam, Jan 2016, AM

- 1. Let Σ_g be a compact connected surface of genus g. Let $f : \Sigma_g \to \Sigma_3$ be a covering space. Show that g must be odd.
- 2. Let K be the complete graph on 4 letters, i.e., K has 4 vertices, and there is a unique edge connecting each pair of distinct vertices.
 - (a) Calculate $\pi_1(K)$.
 - (b) Show that Σ_2 is not a deformation retract of any space homotopy equivalent to K.
- 3. For each of the following, write "True" or "False", and give a proof or example justifying your answer.
 - (a) Every map $S^2 \to S^1 \times S^1$ is null-homotopic.
 - (b) Every map $S^1 \times S^1 \to S^2$ is null-homotopic.
- 4. Give the definition of a Lie group and prove that the matrix group $SL(2, \mathbb{R})$ is a Lie group. Is it compact?
- 5. Either prove or give a counterexample for the following statement:

For any complex vector bundle E over a finite CW complex X with zero section $o(X) \subset E$, the induced map $H_2(E - o(X)) \to H_2(X)$ is surjective.

Topology QR Exam, Jan 2016, PM

- 1. Let $U, V \subset S^n$, $n \ge 2$, be two non-empty connected open subsets such that $S^n = U \cup V$. Show that $U \cap V$ is connected
- 2. Fix a prime number p. Let X be a finite CW complex with an action of $G = \mathbf{Z}/p$.
 - (a) If $\chi(X)$ is not divisible by p, show that the G action on X has a fixed point.
 - (b) Give an example of such an action that is fixed point free with $\chi(X) = 0$.
- 3. If M is a compact smooth manifold, show that its fundamental group $\pi_1(M)$ is finitely generated, and furthermore, it is also finitely presented.
- 4. Show that the sphere S^2 is not a Lie group, but S^3 is a Lie group.
- 5. Construct infinitely many nonisomorphic compactifications of the open interval (0,1). (Recall that two compactifications \overline{X}^1 and \overline{X}^2 of a topological space X are isomorphic if the identity map on X extends to a homeomorphism $\overline{X}^1 \to \overline{X}^2$.)