1. Consider the two-point boundary value problem,

$$y'' + ay' + by = c, \quad 0 \le x \le 1$$

 $y(0) = \alpha, y(1) = \beta.$

- a) Write the difference equation at an interior point x_i using the forward difference for the first-order and central difference for the second-order derivatives respectively. Use this to derive a matrix equation of the form Ay = f.
- b) Use central difference scheme for the first order derivative and rewrite the matrix equation.
- 2 a) Show that $u^p(x) = \sin(p\pi x)$, $p = 1, 2, 3, \ldots$ are eigenfunctions of the second-order differential operator $\frac{\partial^2}{\partial x^2}$ on [0, 1] with homogeneous Dirichlet boundary conditions.
- b) Show that for each p=1,2,3,..., the vectors $u_j^p=\sin(p\pi jh), j=1,2,...,m$ with h=1/m are eigenvectors of the discrete second-order differential operator A defined by

$$(Au)_j = \frac{1}{h^2} \left(u_{j-1}^p - 2u_j^p + u_{j+1}^p \right).$$

- 3. Consider the implicit 2-step method $\alpha y_n + \beta y_{n-1} + \gamma y_{n-2} = hf(y_n)$ for the problem $y' = f(y), y(0) = y_0$.
- a) Find the values of α, β, γ which yield a 2nd order method.
- b) Show that the method is stable.
- c) Show that the negative real axis is contained in the region of absolute stability.
- 4. Consider the following method for solving the heat equation $u_t = u_{xx}$:

$$U_i^{n+2} = U_i^n + \frac{2\Delta t}{h^2} (U_{i-1}^{n+1} - 2U_i^{n+1} + U_{i+1}^{n+1}).$$

- a) Determine the order of accuracy of this method (in both space and time).
- b) Suppose we take $\Delta t = \alpha h^2$ for some fixed $\alpha > 0$ and refine the grid. For what values of α (if any) will this method be Lax-Richtmyer stable and hence convergent?
- 5. Derive the modified equation for the centered difference scheme

$$u_j^{n+1} = u_j^n - \frac{a\Delta t}{2h}(u_{j+1}^n - u_{j-1}^n)$$

for the approximation of the advection equation $u_t + au_x = 0$.