
Applied Functional Analysis Qualifying exam

Assigned January 9, 2022

Problem 1

Let H1 and H2 be Hilbert spaces and A : H1 7→ H2 a compact operator. Prove that adjoint A? of A is
compact.

Solution
As a consequence of the Riesz representation theorem, A is guaranteed to have a unique adjoint A? : H2 7→ H1

and moreover, A? is a bounded linear operator.
Take any bounded sequence (yn)n≥1 in H2, and let M be an upper bound

‖yn‖H2
≤M, ∀n ≥ 1. (1)

Since A? is bounded, we can get the following bounded sequence in H1,

(xn)n≥1, xn := A?yn, ∀n ≥ 1. (2)

Now because A is compact, there exists a subsequence of the bounded sequence defined in (2), call this
subsequence (xσ(n))n≥1, where σ denotes the subsequence selection function, such that (Axσ(n))n≥1 converges
in H2. We can now prove that the sequence (A?yσ(n))n≥1 is Cauchy in H1:

Indeed, we have for all n,m ≥ 1,

‖A?yσ(n) −A?yσ(m)‖2H1
= 〈A?(yσ(n) − yσ(m)), A

?yσ(n) −A?yσ(m)〉H1

=
∣∣〈A?(yσ(n) − yσ(m)), xσ(n) − xσ(m)〉H1

∣∣
=
∣∣〈yσ(n) − yσ(m), Axσ(n) −Axσ(m)〉H2

∣∣
≤ ‖yσ(n) − yσ(m)‖H2

‖Axσ(n) −Axσ(m)‖H2
,

where the first equality is by the definition of the norm, the second equality is because the quantity is
positive and by definition (2), the third equality is by the definition of the adjoint and the last line is by the
Cauchy-Schwartz inequality. Next, we use (1) to get

‖A?yσ(n) −A?yσ(m)‖2H1
≤ 2M‖Axσ(n) −Axσ(m)‖H2

,

and conclude from the fact that (Axσ(n))n≥1 is convergent and therefore Cauchy, that the sequence (A?yσ(n))n≥1
is Cauchy and thus convergent in H1 (because H1 is complete).

We have now shown: For any bounded sequence (yn)n≥1 in H2, there is a subsequence (yσ(n))n≥1 such
that (A?yσ(n))n≥1 converges in H1. This proves that A? is compact.

Problem 2

Let a, b be two real numbers satisfying a < b and consider the space L2([a, b]), with the usual inner product

〈f, g〉 =

∫ b

a

f(x)g(x)dx, ∀ f, g ∈ L2([a, b]),

where the bar denotes complex conjugate. Introduce also the space H := L2([a, b] × [a, b]) and denote its
inner product by

〈F,G〉H =

∫ b

a

∫ b

a

F (x, y)G(x, y)dxdy, ∀F,G ∈ H.
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1. Let (ϕn(x))n≥1 and (ϕ̃n(x))n≥1 be two orthonormal bases of L2([a, b]). Prove that (ϕn(x)ϕ̃m(y))n,m≥1
is an orthonormal basis of H.

2. Consider the compact linear integral operator A : L2([a, b]) 7→ L2([a, b]) defined by

Af(x) :=

∫ b

a

e−(x−y)
2

f(y)dy.

Denote its eigenvalues by λn and its eigenfunctions by un(x), for n ≥ 1. Prove that the kernel of A
satisfies

e−(x−y)
2

=

∞∑
n=1

λnun(x)un(y),

where the series converges in the H norm. Prove also that∫ b

a

∫ b

a

e−2(x−y)
2

dxdy =

∞∑
n=1

λ2n.

Solution
Question 1: Let us introduce the notation:

Φn,m(x, y) := ϕn(x)ϕ̃m(y), ∀x, y ∈ [a, b], ∀n,m ≥ 1. (3)

Note that
F := {Φn,m(x, y), n,m ≥ 1} (4)

is a countable, orthonormal family in H, because

〈Φn,m,Φn′,m′〉H =

∫ b

a

∫ b

a

Φn,m(x, y)Φn′,m′(x, y)dxdy = 〈ϕn, ϕn′〉〈ϕ̃m, ϕ̃m′〉 = δn,n′δm,m′ .

Here we used Fubini’s theorem to write the double integral as an iterated integral (it is easy to show that
the theorem applies). We also used definition (3) and the assumed orthonormality of the bases of L2([a, b]).
To show that the family (4) is a basis of H, we now prove that if Ψ ∈ H satisfies

〈Ψ,Φn,m〉H = 0, ∀n,m ≥ 1, (5)

then Ψ = 0:
Let us introduce the functions

ηn(y) :=

∫ b

a

Ψ(x, y)ϕn(x)dx, ∀, n ≥ 1. (6)

Using the definition (3) of Φn,m and Fubini’s theorem, we conclude from (5) that each of the ηn satisfy

〈ηn, ϕ̃m〉 = 0, ∀m ≥ 1. (7)

Since we know that
(
ϕ̃m(y)

)
m≥1 is a basis of L2([a, b]), we must have ηn(y) = 0 for all n ≥ 1 and a.e. in y.

But then, we conclude from (6) and the fact that
(
ϕn(x)

)
n≥1 is a basis of L2([a, b]) that Ψ(x, y) = 0 a.e.

Question 2: The result follows from the fact that A is self-adjoint and compact. First, since A is
compact, it is also bounded and is guaranteed to have a unique adjoint operator A?. That A = A? follows
from

〈f,Ag〉 =

∫ b

a

f(x)

∫ b

a

e−(x−y)
2

g(y)dydx =

∫ b

a

[∫ b

a

e−(x−y)2f(x)dx

]
g(y)dy = 〈Af, g〉.
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The spectral theorem for self-adjoint compact operators gives that the eigenvectors (un(x))n≥1 of A form an
orthonormal basis of L2([a, b]). That the spectrum of A consists of 0 and real valued eigenvalues also follows
from the spectral theorem.

From question 1, with ϕn(x) = un(x) and with ϕ̃n(y) = un(y) we conclude that the family

F := {Φn,m(x, y) := un(x)un(y), n,m ≥ 1}

is an orthonormal basis of H = L2([a, b]× [a, b]). Since the kernel of A, call it

K(x, y) := e−(x−y)
2

is a function in H, it can be expanded in this basis

K(x, y) = e−(x−y)
2

=

∞∑
n,m=1

cn,mΦn,m(x, y), (8)

where the series converges in the norm of H and where

cn,m =

∫ b

a

∫ b

a

Φn,m(x, y)e−(x−y)
2

dxdy

=

∫ b

a

un(x)

[∫ b

a

e−(x−y)
2

um(y)dy

]
dx

= λm

∫ b

a

un(x)um(x)dx = λnδn,m.

Substituting this in (8) we get the desired expansion of the kernel.
The last result is just Parseval’s relation, because

‖K‖2H =

∫ b

a

∫ b

a

K2(x, y)dxdy =

∫ b

a

∫ b

a

e−2(x−y)
2

dxdy =

∞∑
n,m=1

|cn,m|2 =

∞∑
n=1

|λn|2.

Problem 3

Let H be a Hilbert space over the complex field C.

1. Consider a sequence (xn)n≥1 in H that is weakly Cauchy. This means that for any linear bounded
functional ϕ ∈ H?, the sequence

(
ϕ(xn)

)
n≥1 is Cauchy in C. Define the sequence of linear maps

Fn : H? 7→ C, Fn(ϕ) := ϕ(xn), ∀ϕ ∈ H?, ∀n ≥ 1

and use it to prove that (xn)n≥1 is a bounded sequence.

2. Let S be a set in H with the following property: Every non-empty subset of S has a weak Cauchy
sequence. Prove that S is bounded.

Solution
Question 1: We know from the definition of Fn and the fact that (xn)n≥1 is weakly Cauchy that

(
Fn(ϕ)

)
n≥1

is Cauchy in C and thus convergent, for any ϕ ∈ H?. This point-wise convergence of the sequence (Fn)n≥1
and the Banach-Steinhaus theorem give the uniform boundedness result

M := sup
n≥1
‖Fn‖ <∞. (9)
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Now we prove that ‖Fn‖ = ‖xn‖H , for all n ≥ 1. Indeed, for any n ≥ 1 we have

|Fn(ϕ)| = |ϕ(xn)| ≤ ‖ϕ‖‖xn‖H , ∀ϕ ∈ H?, (10)

which implies

‖Fn‖ = sup
ϕ6=0,ϕ∈H?

|Fn(ϕ)|
‖ϕ‖

≤ ‖xn‖H . (11)

Moreover, for the linear functional ϕ = ϕxn
= 〈xn, ·〉 given in the Riesz representation theorem we have∣∣F (ϕxn

)
∣∣ =

∣∣ϕxn
(xn)

∣∣ =
∣∣〈xn, xn〉∣∣ = ‖xn‖2H (12)

and in addition, ‖ϕxn‖ = ‖xn‖H . Therefore,∣∣F (ϕxn)
∣∣

|ϕxn‖
= ‖xn‖H , (13)

and using (11) we get ‖Fn‖ = ‖xn‖H . The proof follows from (9).
Question 2: We argue by contradiction. Suppose that S is not bounded. Then, we can find a sequence

(xn)n≥1 in S with the property
‖xn‖H > n, ∀n ≥ 1. (14)

Consider the set
X := {xn, n ≥ 1}, (15)

which is obviously a non-empty subset of S. By the assumption, there is a weak Cauchy sequence in X.
This must be a subsequence (xσ(n))n≥1 of (xn)n≥1. But by question 1 this weak Cauchy subsequence must
be bounded, which contradicts that ‖xσ(n)‖ > σ(n)→∞ as n→∞.

We have reached a contradiction, so S must be bounded.

Problem 4

Let δy denote the Dirac delta located at y ∈ R, and let δ
(n)
y denote its nth distributional derivative.

1. Does
∑∞
n=1 δ

(n)
1/n define a distribution in D ′(R)? Prove or disprove.

2. Does
∑∞
n=1 δ

(n)
1/n define a distribution in D ′((0,∞))? Prove or disprove.

3. Let f(x) be a C∞(R) function with f(0) = 0 and let F ∈ D ′(R) be a distribution with support {0}.
Is f(x)F the zero distribution? Prove or disprove.

Solution
Question 1: No, it does not. For instance, there exists a test function φ ∈ D(R) (infinitely differentiable,

with compact support) that agrees exactly with e−x for −1 < x < 1. Then obviously φ(n)(x) = (−1)ne−x

for −1 < x < 1. Therefore (−1)nφ(n)(n−1) = e−n
−1

which is positive and greater than or equal to e−1 > 0
for all n = 1, 2, 3, . . . . So, applying the purported distribution to φ gives( ∞∑

n=1

δ
(n)
1/n

)
[φ] =

∞∑
n=1

(−1)nφ(n)(n−1) ≥
∞∑
n=1

e−1

which obviously diverges. So the action of the purported distribution is not even defined on every test
function in D(R).
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Question 2: Yes, it does. Firstly, it obviously defines a linear functional on D((0,∞)). Indeed, every
function φ ∈ D((0,∞)) is a C∞ function with compact support bounded away from zero. Hence( ∞∑

n=1

δ
(n)
1/n

)
[φ] =

∞∑
n=1

(−1)nφ(n)(n−1) =

N(φ)∑
n=1

φ(n)(n−1)

where N(φ) is the largest positive integer n for which n−1 lies in the support of φ. This number is necessarily
finite by compact support in (0,∞), so it is a finite sum, which is clearly finite. Linearity is obvious. To
prove continuity, suppose that φk ∈ D((0,∞)) for k = 0, 1, 2, 3, . . . , and that φk → 0 in D((0,∞)). Then
according to the topology of D((0,∞)), there exists a fixed compact set K ⊂ (0,∞) containing the supports

of all φk, and for every α = 0, 1, 2, 3, . . . , supx>0 |φ
(α)
k (x)| → 0 as k →∞. Then( ∞∑

n=1

δ
(n)
1/n

)
[φk] =

∞∑
n=1

(−1)nφ
(n)
k (n−1) =

N∑
n=1

(−1)nφ
(n)
k (n−1)

where N is the largest positive integer n for which n−1 lies in K. This number is necessarily finite because
K ⊂ (0,∞) is compact. Therefore,∣∣∣∣∣

( ∞∑
n=1

δ
(n)
1/n

)
[φk]

∣∣∣∣∣ ≤
N∑
n=1

sup
x>0
|φ(n)k (x)| → 0, k →∞,

which establishes the continuity of the functional.
Question 3: Not necessarily. For instance, let f(x) := x and let F = δ′. Then f(x)F acts on a test

function φ ∈ D(R) by

(f(x)F ) [φ] = F [fφ] = −(fφ)′(0) = −f(0)φ′(0)− f ′(0)φ(0) = −f ′(0)φ(0) = −φ(0)

so f(x)F = −δ0 6= 0 in this case.

Problem 5

Suppose that A is a compact self-adjoint operator on a Hilbert space H, and suppose that the eigenvalues
{λn}∞n=1 of A are all nonzero and satisfy |λn| ≤ Cn−1 for some C > 0. Let {en}∞n=1 denote the corresponding
orthonormal eigenvectors.

1. Show that f :=
∑∞
n=1 n

−1/2λnen ∈ H.

2. Is f ∈ Ran(A)? Prove or disprove.

Solution
Question 1: The generalized Fourier coefficients of f are cn := n−1/2λn. Since |cn| ≤ Cn−3/2, we have

|cn|2 ≤ C2n−3 which is summable, so {cn}∞n=1 ∈ `2(N). Therefore f ∈ H.
Question 2: No, f 6∈ Ran(A). Indeed, if f ∈ Ran(A), then there exists u ∈ H with Au = f . Expanding

u in the orthonormal basis of eigenvectors of A gives

u =

∞∑
n=1

unen =⇒ Au =

∞∑
n=1

λnunen

so equating Au = f shows that λnun = n−1/2λn. Since no eigenvalues are zero, un = n−1/2. But then
|un|2 = n−1 which is not summable, so we arrive at a contradiction with u ∈ H.
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