
Applied Functional Analysis QR Exam - August 2021

Problem 1 Consider the sequence of integrable functions (fn)n≥1, where

fn : R→ R, fn(x) = − 2n3/2x

π(1 + nx)2
, n = 1, 2, . . . . (1)

1. Prove that the sequence (fn)n≥1 converges in the sense of distributions to δ′(x), the derivative of the
Dirac delta distribution.

2. Does the sequence (fn)n≥1 converge pointwise? Does it converge uniformly?

Solution
1. Each function in the sequence generates a regular distribution i.e., a continuous linear functional on

the space D of test functions, denoted by

〈fn, ϕ〉 =

∫
R
fn(x)ϕ(x)dx, ∀ϕ ∈ D.

We must prove that
lim
n→∞

〈fn, ϕ〉 = −ϕ′(0), ∀ϕ ∈ D.

We are interested in test functions ϕ whose support contain the origin. If that is not the case, it is easy to
see from the calculations below that the limit is zero. Let ϕ be a test function with support contained in
[−α, β], where α, β > 0. Note that

fn(x) = − 2n3/2x

π(1 + nx)2
=

d

dx

√
n

π(1 + nx2)
,

and use integration by parts to get

〈fn, ϕ〉 =

∫
R
fn(x)ϕ(x)dx

=

∫
R

d

dx

[ √
n

π(1 + nx2)

]
ϕ(x)dx

= −
∫
R

√
n

π(1 + nx2)
ϕ′(x)dx.

Then, using that ∫
R

√
n

π(1 + nx2)
dx = 1,

and the support of ϕ, we get

〈fn, ϕ〉+ ϕ′(0) =

∫
R

√
n

π(1 + nx2)

[
ϕ′(0)− ϕ′(x)

]
= ϕ′(0)

[∫ −α
−∞

√
n

π(1 + nx2)
dx+

∫ ∞
β

√
n

π(1 + nx2)
dx

]
+

∫ β

−α

√
n

π(1 + nx2)

[
ϕ′(0)− ϕ′(x)

]
dx.

Taking absolute values and using the triangle inequality,

|〈fn, ϕ〉+ ϕ′(0)| ≤ |ϕ′(0)|
[∫ −α
−∞

√
n

π(1 + nx2)
dx+

∫ ∞
β

√
n

π(1 + nx2)
dx

]
+

∫ β

−α

√
n

π(1 + nx2)

∣∣ϕ′(0)− ϕ′(x)
∣∣dx.
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The first two integrals can be evaluated explicitly,∫ −α
−∞

√
n

π(1 + nx2)
dx =

1

2
− arctan(α

√
n)

π
,∫ ∞

β

√
n

π(1 + nx2)
dx =

1

2
− arctan(β

√
n)

π
,

and both tend to 0 as n→∞. We also have by the mean value theorem that there exists a constant C > 0
such that ∣∣ϕ′(0)− ϕ′(x)

∣∣ ≤ C|x|, x ∈ [−α, β].

Here we used that ϕ′′(x) is continuous (by definition of D) and thus bounded on the compact interval [−α, β].
Therefore, ∫ β

−α

√
n

π(1 + nx2)

∣∣ϕ′(0)− ϕ′(x)
∣∣dx ≤ C ∫ β

−α

√
n|x|

π(1 + nx2)
dx

=
1√
nπ

∫ √nβ
−
√
nα

|t|dt
1 + t2

=
ln(1 + nα) + ln(1 + nβ)√

nπ

which tends to 0 as n→∞. We now have the result.
2. The sequence (fn)n≥1 converges pointwise to the function 0. Indeed, fn(0) = 0 by definition and for

any x 6= 0 we have

|fn(x)| = 2|x|
π(n−3/4 + n1/4x)2

→ 0, as n→∞.

However the convergence is not uniform, because if it was, then (fn)n≥1 would have converged to the zero
distribution.

Problem 2

1. Let g : X 7→ X be a mapping of a Banach space X into itself. Suppose that there exists a closed ball
B(x0, R) contained in X, centered at xo and of radius R, where g satisfies

‖g(x)− g(y)‖ ≤ C‖x− y‖, ∀x, y ∈ B(x0, R), (2)

for a constant C ∈ (0, 1). Suppose also that

‖g(xo)− xo‖ < (1− C)R. (3)

Prove that the sequence (xn)n≥1 in X, defined by xn = g(xn−1) for all n ≥ 1, converges to a point

x ∈ B(x0, R), which is the unique fixed point of g(x) in the closed ball.

2. Use the result above to set up an iteration for finding a root of the polynomial x3 − 4x− 1.

Solution
1. We know by assumption (3) that x0 and x1 are in the ball B(x0, R). Let us show that the whole sequence
lies in the ball. We have from (2)-(3) and the triangle inequality that

‖x2 − x0‖ = ‖g(x1)− g(x0) + g(x0)− x0‖ ≤ C‖x1 − x0‖+ ‖x1 − x0‖

= (1 + C)‖x1 − x0‖ =
(1− C2)

(1− C)
‖x1 − x0‖ < (1− C2)R < R,
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and thus x2 ∈ B(x0, R).
We proceed inductively

Hypothesis: Suppose that

‖xj − x0‖ ≤
(1− Cj)
(1− C)

‖x1 − x0‖ < (1− Cj)R,

for j = 1, 2, . . . , n. This means in particular that xj ∈ B(x0, R) for j = 1, . . . , n.
Inductive step: For xn+1 we have using the hypotesis and (2) that

‖xn+1 − xn‖ = ‖g(xn)− g(xn−1)‖ ≤ C‖xn − xn−1‖ = C‖g(xn−1)− g(xn−2)‖
≤ C2‖xn−1 − xn−2‖ . . . ≤ Cn‖x1 − x0‖,

and therefore, by the triangle inequality, the hypothesis and (3) we get

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖+ ‖xn − x0‖ ≤ Cn‖x1 − x0‖+
(1− Cn)

(1− C)
‖x1 − x0‖

=
(1− Cn+1)

(1− C)
‖x1 − x0‖ < (1− Cn+1)R.

This proves, by the principle of induction, that xn ∈ B(x0, R) for all n ≥ 1.
We also have that the sequence (xn)n≥1 is Cauchy, because for all m > n ≥ 1,

‖xm − xn‖ ≤ ‖xm − xm−1‖+ . . . ‖xn+1 − xn‖ ≤
(
Cm + . . .+ Cn

)
‖x1 − x0‖

= Cn
(
1 + . . .+ Cm−n

)
‖x1 − x0‖ =

Cn(1− Cm−n+1)

1− C
‖x1 − x0‖ < CnR.

Since Cn → 0 as n→∞, for all ε > 0, there exists natural number N such that

Cn <
ε

R
, ∀n ≥ N,

and therefore, by the above,

‖xm − xn‖ < ε, ∀m ≥ n ≥ N.

The sequence is indeed Cauchy and since X is complete, there is x ∈ X such that limn→∞ xn = x. But since
the sequence is in the closed ball B(x0, R), we must have x ∈ B(x0, R).

Obviously, g is continuous in B(x0, R) by (2), so

x = lim
n→∞

xn+1 = lim
n→∞

g(xn) = g
(

lim
n→∞

xn
)

= g(x),

so x is a fixed point of the mapping g in B(x0, R). It is trivial to show that there is no other fixed point,
because if there were, call it ξ, we would have

‖x− ξ‖ = ‖g(x)− g(ξ)‖ ≤ C‖x− ξ‖ =⇒ (1− C)‖x− ξ‖ ≤ 0 =⇒ ‖x− ξ‖ = 0 =⇒ x = ξ.

We found the unique fixed point of the mapping g(x) restricted to B(x0, R).

2. The polynomial x3 − 4x − 1 has three real roots. We proceed as above, with x0 = 0, which is not a
root, and X = [− 3

2 ,
3
2 ]. Note that f(x) = x3 − 4x− 1 satisfies

f

(
3

2

)
< 0 < f

(
−3

2

)
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so there is a root in X. Let us define the function

g : X 7→ X, g(x) =
1

x2 − 4

and note that it satisfies

|g(x)− g(y)| = |y2 − x2|
(4− x2)(4− y2)

≤ |x|+ |y|
(4− x2)(4− y2)

|x− y| ≤ 2

9
|x− y|, ∀x, y ∈ [−1, 1]. (4)

Thus, we can apply the result at part 1, with x0 = 0, the closed ball B(x0, R) = [−1, 1] and C = 2/9 to
conclude that the iteration

xn+1 = g(xn) =
1

x2n − 4
, n ≥ 1,

converges to the fixed point x of g in [−1, 1]. That is the root we look for, because

x = g(x) =
1

x2 − 4
=⇒ (x2 − 4)x− 1 = x3 − 4x− 1 = 0.

Here’s an alternate solution (maybe more obvious). One could write x3−4x−1 = 0 in the form x = g(x)
with g(x) := 1

4 (x3 − 1). Then we have

|g(x)− g(y)| = 1
4 |x

2 + xy + y2||x− y|.

If we take x0 = 0, then on B(x0, R) we have |g(x) − g(y)| ≤ 3
4R

2|x − y| = C|x − y| with C := 3
4R

2. So for

the contraction condition C ∈ (0, 1) to hold we assume that R < 2/
√

3. Also, from x0 = 0 we have

|g(x0)− x0| = 1
4 .

Therefore to satisfy the conditions we need to find some R ∈ (0, 2/
√

3) such that (1−C)R = R− 3
4R

3 > 1
4 .

Obviously R − 3
4R

3 vanishes at the endpoints R = 0, 2/
√

3 and is positive in between. By the quadratic
formula, the critical points are R = ±2/3, so there is exactly one critical point, a local maximizer, in
(0, 2/

√
3). At the maximizing point,

(1− C)R|R=2/3 = R− 3
4R

3
∣∣
R=2/3

=
(
2
3

)2
= 4

9 >
1
4 .

So if we take the radius of the ball to be R = 2/3, then all of the hypotheses hold and the iteration converges
to a unique root in the ball.

Problem 3 Consider the linear operator L : `2 7→ `2 defined on the Hilbert space of square summable

sequences by

Lx =

(
ξj√
j

)
j≥1

, ∀x =
(
ξj)j≥1 ∈ `2. (5)

Find the point spectrum, the continuous spectrum and the residual spectrum of L.

Solution
We begin by showing that L is a compact operator: Consider the sequence of operators (Ln)n≥1, defined by

Ln : `2 7→ `2, Lnx =

(
ξ1,

ξ2√
2
, . . . ,

ξn√
n
, 0, 0, . . .

)
, ∀x =

(
ξj)j≥1 ∈ `2.

These operators are bounded, because

‖Lnx‖2 =

n∑
j=1

|ξj |2

j
≤

n∑
j=1

|ξj |2 ≤ ‖x‖2, ∀x =
(
ξj)j≥1 ∈ `2,
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and since they have finite dimensional range, they are compact. We then have

‖(L− Ln)x‖2 =

∞∑
j=n+1

|ξj |2

j
≤ 1

n+ 1

∞∑
j=n+1

|ξj |2 ≤
‖x‖2

n+ 1
, ∀x =

(
ξj)j≥1 ∈ `2,

which implies that in the operator norm we have

‖L− Ln‖ ≤
1√
n+ 1

.

Therefore, Ln converges to L uniformly (in operator norm) and the limit is compact.
Note that L is also a self-adjoint operator, so its residual spectrum must be empty. From the spectral

theorem we know that the spectrum σ(L) is the union of the point spectrum σp(L) and {0}. Clearly 0 is not
an eigenvalue, because Lx = 0 is possible only if x = 0. Thus, L has the continuous spectrum σc(L) = {0}.
The point spectrum consists of the eigenvalues λj = 1/

√
j, for j = 1, 2, . . . , for the eigenvectors xj having

entry 1 in the j−th place and zero everywhere else.

Problem 4 Let A be a bounded linear operator defined on a Hilbert space H, and let B : H → H,

B := I +A∗A, where A∗ denotes the adjoint of A.

1. Show that ranB is closed.

2. Is B injective? Prove or find a counterexample.

3. Is B onto? Again prove or find a counterexample.

4. Can A fail to have a closed range? Prove or find a counterexample.

Solution

1. To show that ranB is closed, we will prove that B is bounded away from zero. Note that given x ∈ H,
‖Bx‖2 = (Bx,Bx) = (x + A∗Ax, x + A∗Ax) = (x, x) + (x,A∗Ax) + (A∗Ax, x) + (A∗Ax,A∗Ax) =
‖x‖2 + 2(Ax,Ax) + ‖A∗Ax‖2 = ‖x‖2 + 2‖Ax‖2 + ‖A∗Ax‖2 ≥ ‖x‖2. Therefore ‖Bx‖ ≥ ‖x‖ proving
that B is bounded below. This is equivalent to ranB being closed and Bx = 0 if and only if x = 0.

2. The same argument also proves that B is injective. However, here is a direct proof of the latter: suppose
that Bx = By for x, y ∈ H. Then Bz = 0 where z := x − y. Now using Bz = z + A∗Az = 0, we get
‖z‖2 = (z, z) = (−A∗Az, z) = −(A∗Az, z) = −(Az,Az) = −‖Az‖2. Since ‖z‖2 ≥ 0 and ‖Az‖2 ≥ 0, we
obtain ‖z‖2 = 0 which implies that z = 0, i.e., x = y.

3. B is indeed onto. That is because from the first result, ranB = ranB, and the latter equals (kerB∗)⊥.
But B∗ = B and B is injective, so (kerB∗)⊥ = H.

4. Yes, it is possible. Consider H = L2(0, 1) and A : H → H defined by Af(x) :=
∫ x
0
f(y) dy, which is

obviously linear. Since L2(0, 1) ⊂ L1(0, 1) (proof:
∫ 1

0
|f(y)|dy ≤

√∫ 1

0
|f(y)|2 dy = ‖f‖ by Cauchy-

Schwarz) we have

‖Af‖2 =

∫ 1

0

|Af(x)|2 dx =

∫ 1

0

∣∣∣∣∫ x

0

f(y) dy

∣∣∣∣2 dx

≤
∫ 1

0

(∫ x

0

|f(y)|dy
)2

dx

≤
∫ 1

0

(∫ 1

0

|f(y)|dy
)2

dx

≤
∫ 1

0

‖f‖2 dx = ‖f‖2
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so A is defined on all of H and is bounded with norm ‖A‖ ≤ 1. However its range is not closed. To
see this, first note that every function in the range of A is absolutely continuous (continuous with
L1 derivative) and vanishes in the limit x ↓ 0. Consider the sequence {fn(x) := nχ(0,n−1)(x)}∞n=1

of piecewise constant functions (χ is the characteristic function of the indicated interval). Obviously
fn ∈ H for all n. By direct computation,

Afn(x) =

{
nx, 0 < x ≤ n−1

1, n−1 ≤ x < 1.

It is easy to see that Afn → 1 (limit is the constant function 1 ∈ H) in the L2(0, 1) sense. However
the constant function 1 does not vanish as x ↓ 0 so it is not in the range of A. So the range of A is not
closed.

Problem 5 Determine whether for every f ∈ L2(R) there is a unique solution u ∈ L2(R) of

u(x) +

∫
R

e−
1
2 (x−y)

2

u(y) dy = f(x),

and prove it. If the answer is in the affirmative, give a formula for u(x) in terms of f .

Solution
We note that the integral operator has a convolution kernel, so we take the Fourier transform on L2(R):

û(k) + ê−
1
2x

2
(k)û(k) = f̂(k).

But the kernel is a positive Gaussian so its Fourier transform is as well:

ê−
1
2x

2
(k) = Ce−hk

2

for some positive constants C > 0, h > 0 (depending on the normalization of the Fourier transform).
Therefore,

û(k) =
f̂(k)

1 + Ce−hk2
.

The right-hand side is in L2(R), because f̂ is by Plancherel, and

|û(k)| ≤ |f̂(k)|

because Ce−hk
2

> 0. Therefore, û ∈ L2(R), and is uniquely determined. By Plancherel again, u ∈ L2(R)
is also uniquely determined. This proves unique solvability. A formula for u(x) is given by inverse Fourier
transform.
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