Applied Functional Analysis QR Exam - August 2021

Problem 1 Consider the sequence of integrable functions $(f_n)_{n\geq 1}$, where

$$f_n: \mathbb{R} \to \mathbb{R}, \quad f_n(x) = -\frac{2n^{3/2}x}{\pi(1+nx)^2}, \qquad n = 1, 2, \dots$$
 (1)

- 1. Prove that the sequence $(f_n)_{n\geq 1}$ converges in the sense of distributions to $\delta'(x)$, the derivative of the Dirac delta distribution.
- 2. Does the sequence $(f_n)_{n\geq 1}$ converge pointwise? Does it converge uniformly?

Solution

1. Each function in the sequence generates a regular distribution i.e., a continuous linear functional on the space \mathcal{D} of test functions, denoted by

$$\langle f_n, \varphi \rangle = \int_{\mathbb{R}} f_n(x) \varphi(x) dx, \quad \forall \varphi \in \mathcal{D}.$$

We must prove that

$$\lim_{n \to \infty} \langle f_n, \varphi \rangle = -\varphi'(0), \qquad \forall \varphi \in \mathcal{D}.$$

We are interested in test functions φ whose support contain the origin. If that is not the case, it is easy to see from the calculations below that the limit is zero. Let φ be a test function with support contained in $[-\alpha, \beta]$, where $\alpha, \beta > 0$. Note that

$$f_n(x) = -\frac{2n^{3/2}x}{\pi(1+nx)^2} = \frac{d}{dx}\frac{\sqrt{n}}{\pi(1+nx^2)},$$

and use integration by parts to get

$$\langle f_n, \varphi \rangle = \int_{\mathbb{R}} f_n(x) \varphi(x) dx$$

$$= \int_{\mathbb{R}} \frac{d}{dx} \left[\frac{\sqrt{n}}{\pi (1 + nx^2)} \right] \varphi(x) dx$$

$$= -\int_{\mathbb{R}} \frac{\sqrt{n}}{\pi (1 + nx^2)} \varphi'(x) dx.$$

Then, using that

$$\int_{\mathbb{R}} \frac{\sqrt{n}}{\pi(1+nx^2)} dx = 1,$$

and the support of φ , we get

$$\langle f_n, \varphi \rangle + \varphi'(0) = \int_{\mathbb{R}} \frac{\sqrt{n}}{\pi (1 + nx^2)} \left[\varphi'(0) - \varphi'(x) \right]$$
$$= \varphi'(0) \left[\int_{-\infty}^{-\alpha} \frac{\sqrt{n}}{\pi (1 + nx^2)} dx + \int_{\beta}^{\infty} \frac{\sqrt{n}}{\pi (1 + nx^2)} dx \right] + \int_{-\alpha}^{\beta} \frac{\sqrt{n}}{\pi (1 + nx^2)} \left[\varphi'(0) - \varphi'(x) \right] dx.$$

Taking absolute values and using the triangle inequality,

$$|\langle f_n, \varphi \rangle + \varphi'(0)| \le |\varphi'(0)| \left[\int_{-\infty}^{-\alpha} \frac{\sqrt{n}}{\pi(1 + nx^2)} dx + \int_{\beta}^{\infty} \frac{\sqrt{n}}{\pi(1 + nx^2)} dx \right] + \int_{-\alpha}^{\beta} \frac{\sqrt{n}}{\pi(1 + nx^2)} |\varphi'(0) - \varphi'(x)| dx.$$

The first two integrals can be evaluated explicitly,

$$\int_{-\infty}^{-\alpha} \frac{\sqrt{n}}{\pi (1 + nx^2)} dx = \frac{1}{2} - \frac{\arctan(\alpha \sqrt{n})}{\pi},$$
$$\int_{\beta}^{\infty} \frac{\sqrt{n}}{\pi (1 + nx^2)} dx = \frac{1}{2} - \frac{\arctan(\beta \sqrt{n})}{\pi},$$

and both tend to 0 as $n \to \infty$. We also have by the mean value theorem that there exists a constant C > 0 such that

$$|\varphi'(0) - \varphi'(x)| \le C|x|, \qquad x \in [-\alpha, \beta].$$

Here we used that $\varphi''(x)$ is continuous (by definition of \mathcal{D}) and thus bounded on the compact interval $[-\alpha, \beta]$. Therefore,

$$\int_{-\alpha}^{\beta} \frac{\sqrt{n}}{\pi (1 + nx^2)} |\varphi'(0) - \varphi'(x)| dx \le C \int_{-\alpha}^{\beta} \frac{\sqrt{n}|x|}{\pi (1 + nx^2)} dx$$

$$= \frac{1}{\sqrt{n}\pi} \int_{-\sqrt{n}\alpha}^{\sqrt{n}\beta} \frac{|t| dt}{1 + t^2}$$

$$= \frac{\ln(1 + n\alpha) + \ln(1 + n\beta)}{\sqrt{n}\pi}$$

which tends to 0 as $n \to \infty$. We now have the result.

2. The sequence $(f_n)_{n\geq 1}$ converges pointwise to the function 0. Indeed, $f_n(0)=0$ by definition and for any $x\neq 0$ we have

$$|f_n(x)| = \frac{2|x|}{\pi(n^{-3/4} + n^{1/4}x)^2} \to 0$$
, as $n \to \infty$.

However the convergence is not uniform, because if it was, then $(f_n)_{n\geq 1}$ would have converged to the zero distribution.

Problem 2

1. Let $g: X \mapsto X$ be a mapping of a Banach space X into itself. Suppose that there exists a closed ball $\overline{B(x_0, R)}$ contained in X, centered at x_o and of radius R, where g satisfies

$$||g(x) - g(y)|| \le C||x - y||, \quad \forall x, y \in \overline{B(x_0, R)},$$
 (2)

for a constant $C \in (0,1)$. Suppose also that

$$||g(x_o) - x_o|| < (1 - C)R.$$
 (3)

Prove that the sequence $(x_n)_{n\geq 1}$ in X, defined by $x_n=g(x_{n-1})$ for all $n\geq 1$, converges to a point $x\in \overline{B(x_0,R)}$, which is the unique fixed point of g(x) in the closed ball.

2. Use the result above to set up an iteration for finding a root of the polynomial $x^3 - 4x - 1$.

Solution

1. We know by assumption (3) that x_0 and x_1 are in the ball $\overline{B(x_0, R)}$. Let us show that the whole sequence lies in the ball. We have from (2)-(3) and the triangle inequality that

$$||x_2 - x_0|| = ||g(x_1) - g(x_0) + g(x_0) - x_0|| \le C||x_1 - x_0|| + ||x_1 - x_0||$$

= $(1 + C)||x_1 - x_0|| = \frac{(1 - C^2)}{(1 - C)}||x_1 - x_0|| < (1 - C^2)R < R,$

and thus $x_2 \in \overline{B(x_0, R)}$.

We proceed inductively **Hypothesis:** Suppose that

$$||x_j - x_0|| \le \frac{(1 - C^j)}{(1 - C)} ||x_1 - x_0|| < (1 - C^j)R,$$

for j = 1, 2, ..., n. This means in particular that $x_j \in \overline{B(x_0, R)}$ for j = 1, ..., n. **Inductive step:** For x_{n+1} we have using the hypotesis and (2) that

$$||x_{n+1} - x_n|| = ||g(x_n) - g(x_{n-1})|| \le C||x_n - x_{n-1}|| = C||g(x_{n-1}) - g(x_{n-2})||$$

$$\le C^2||x_{n-1} - x_{n-2}|| \dots \le C^n||x_1 - x_0||,$$

and therefore, by the triangle inequality, the hypothesis and (3) we get

$$||x_{n+1} - x_0|| \le ||x_{n+1} - x_n|| + ||x_n - x_0|| \le C^n ||x_1 - x_0|| + \frac{(1 - C^n)}{(1 - C)} ||x_1 - x_0||$$
$$= \frac{(1 - C^{n+1})}{(1 - C)} ||x_1 - x_0|| < (1 - C^{n+1})R.$$

This proves, by the principle of induction, that $x_n \in \overline{B(x_0, R)}$ for all $n \ge 1$.

We also have that the sequence $(x_n)_{n\geq 1}$ is Cauchy, because for all $m>n\geq 1$,

$$||x_m - x_n|| \le ||x_m - x_{m-1}|| + \dots + ||x_{n+1} - x_n|| \le (C^m + \dots + C^n) ||x_1 - x_0||$$
$$= C^n (1 + \dots + C^{m-n}) ||x_1 - x_0|| = \frac{C^n (1 - C^{m-n+1})}{1 - C} ||x_1 - x_0|| < C^n R.$$

Since $C^n \to 0$ as $n \to \infty$, for all $\epsilon > 0$, there exists natural number N such that

$$C^n < \frac{\epsilon}{R}, \qquad \forall \, n \ge N,$$

and therefore, by the above,

$$||x_m - x_n|| < \epsilon, \quad \forall m \ge n \ge N.$$

The sequence is indeed Cauchy and since X is complete, there is $x \in X$ such that $\lim_{n\to\infty} x_n = x$. But since the sequence is in the closed ball $\overline{B(x_0,R)}$, we must have $x \in \overline{B(x_0,R)}$.

Obviously, g is continuous in $B(x_0, R)$ by (2), so

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} g(x_n) = g\left(\lim_{n \to \infty} x_n\right) = g(x),$$

so x is a fixed point of the mapping g in $B(x_0, R)$. It is trivial to show that there is no other fixed point, because if there were, call it ξ , we would have

$$||x - \xi|| = ||g(x) - g(\xi)|| \le C||x - \xi|| \Longrightarrow (1 - C)||x - \xi|| \le 0 \Longrightarrow ||x - \xi|| = 0 \Longrightarrow x = \xi.$$

We found the unique fixed point of the mapping g(x) restricted to $\overline{B(x_0,R)}$.

2. The polynomial $x^3 - 4x - 1$ has three real roots. We proceed as above, with $x_0 = 0$, which is not a root, and $X = \begin{bmatrix} -\frac{3}{2}, \frac{3}{2} \end{bmatrix}$. Note that $f(x) = x^3 - 4x - 1$ satisfies

$$f\left(\frac{3}{2}\right) < 0 < f\left(-\frac{3}{2}\right)$$

so there is a root in X. Let us define the function

$$g: X \mapsto X, \qquad g(x) = \frac{1}{x^2 - 4}$$

and note that it satisfies

$$|g(x) - g(y)| = \frac{|y^2 - x^2|}{(4 - x^2)(4 - y^2)} \le \frac{|x| + |y|}{(4 - x^2)(4 - y^2)} |x - y| \le \frac{2}{9} |x - y|, \qquad \forall x, y \in [-1, 1]. \tag{4}$$

Thus, we can apply the result at part 1, with $x_0 = 0$, the closed ball $\overline{B(x_0, R)} = [-1, 1]$ and C = 2/9 to conclude that the iteration

$$x_{n+1} = g(x_n) = \frac{1}{x_n^2 - 4}, \quad n \ge 1,$$

converges to the fixed point x of g in [-1,1]. That is the root we look for, because

$$x = g(x) = \frac{1}{x^2 - 4} \Longrightarrow (x^2 - 4)x - 1 = x^3 - 4x - 1 = 0.$$

Here's an alternate solution (maybe more obvious). One could write $x^3 - 4x - 1 = 0$ in the form x = g(x) with $g(x) := \frac{1}{4}(x^3 - 1)$. Then we have

$$|g(x) - g(y)| = \frac{1}{4}|x^2 + xy + y^2||x - y|.$$

If we take $x_0 = 0$, then on $\overline{B(x_0, R)}$ we have $|g(x) - g(y)| \le \frac{3}{4}R^2|x - y| = C|x - y|$ with $C := \frac{3}{4}R^2$. So for the contraction condition $C \in (0, 1)$ to hold we assume that $R < 2/\sqrt{3}$. Also, from $x_0 = 0$ we have

$$|g(x_0) - x_0| = \frac{1}{4}.$$

Therefore to satisfy the conditions we need to find some $R \in (0, 2/\sqrt{3})$ such that $(1-C)R = R - \frac{3}{4}R^3 > \frac{1}{4}$. Obviously $R - \frac{3}{4}R^3$ vanishes at the endpoints $R = 0, 2/\sqrt{3}$ and is positive in between. By the quadratic formula, the critical points are $R = \pm 2/3$, so there is exactly one critical point, a local maximizer, in $(0, 2/\sqrt{3})$. At the maximizing point,

$$(1-C)R|_{R=2/3} = R - \frac{3}{4}R^3|_{R=2/3} = \left(\frac{2}{3}\right)^2 = \frac{4}{9} > \frac{1}{4}.$$

So if we take the radius of the ball to be R = 2/3, then all of the hypotheses hold and the iteration converges to a unique root in the ball.

<u>Problem 3</u> Consider the linear operator $L:\ell^2\mapsto\ell^2$ defined on the Hilbert space of square summable

sequences by

$$Lx = \left(\frac{\xi_j}{\sqrt{j}}\right)_{j\geq 1}, \qquad \forall x = (\xi_j)_{j\geq 1} \in \ell^2.$$
 (5)

Find the point spectrum, the continuous spectrum and the residual spectrum of L.

Solution

We begin by showing that L is a compact operator: Consider the sequence of operators $(L_n)_{n\geq 1}$, defined by

$$L_n: \ell^2 \mapsto \ell^2, \qquad L_n x = \left(\xi_1, \frac{\xi_2}{\sqrt{2}}, \dots, \frac{\xi_n}{\sqrt{n}}, 0, 0, \dots\right), \qquad \forall x = (\xi_j)_{j \ge 1} \in \ell^2.$$

These operators are bounded, because

$$||L_n x||^2 = \sum_{j=1}^n \frac{|\xi_j|^2}{j} \le \sum_{j=1}^n |\xi_j|^2 \le ||x||^2, \quad \forall x = (\xi_j)_{j \ge 1} \in \ell^2,$$

and since they have finite dimensional range, they are compact. We then have

$$\|(L - L_n)x\|^2 = \sum_{j=n+1}^{\infty} \frac{|\xi_j|^2}{j} \le \frac{1}{n+1} \sum_{j=n+1}^{\infty} |\xi_j|^2 \le \frac{\|x\|^2}{n+1}, \quad \forall x = (\xi_j)_{j \ge 1} \in \ell^2,$$

which implies that in the operator norm we have

$$||L - L_n|| \le \frac{1}{\sqrt{n+1}}.$$

Therefore, L_n converges to L uniformly (in operator norm) and the limit is compact.

Note that L is also a self-adjoint operator, so its residual spectrum must be empty. From the spectral theorem we know that the spectrum $\sigma(L)$ is the union of the point spectrum $\sigma_p(L)$ and $\{0\}$. Clearly 0 is not an eigenvalue, because Lx=0 is possible only if x=0. Thus, L has the continuous spectrum $\sigma_c(L)=\{0\}$. The point spectrum consists of the eigenvalues $\lambda_j=1/\sqrt{j}$, for $j=1,2,\ldots$, for the eigenvectors x_j having entry 1 in the j-th place and zero everywhere else.

Problem 4 Let A be a bounded linear operator defined on a Hilbert space \mathcal{H} , and let $B:\mathcal{H}\to\mathcal{H}$,

 $B := \mathbb{I} + A^*A$, where A^* denotes the adjoint of A.

- 1. Show that $\operatorname{ran} B$ is closed.
- 2. Is B injective? Prove or find a counterexample.
- 3. Is B onto? Again prove or find a counterexample.
- 4. Can A fail to have a closed range? Prove or find a counterexample.

Solution

- 1. To show that ran B is closed, we will prove that B is bounded away from zero. Note that given $x \in \mathcal{H}$, $\|Bx\|^2 = (Bx, Bx) = (x + A^*Ax, x + A^*Ax) = (x, x) + (x, A^*Ax) + (A^*Ax, x) + (A^*Ax, A^*Ax) = \|x\|^2 + 2(Ax, Ax) + \|A^*Ax\|^2 = \|x\|^2 + 2\|Ax\|^2 + \|A^*Ax\|^2 \ge \|x\|^2$. Therefore $\|Bx\| \ge \|x\|$ proving that B is bounded below. This is equivalent to ran B being closed and Bx = 0 if and only if x = 0.
- 2. The same argument also proves that B is injective. However, here is a direct proof of the latter: suppose that Bx = By for $x, y \in \mathcal{H}$. Then Bz = 0 where z := x y. Now using $Bz = z + A^*Az = 0$, we get $\|z\|^2 = (z, z) = (-A^*Az, z) = -(A^*Az, z) = -(Az, Az) = -\|Az\|^2$. Since $\|z\|^2 \ge 0$ and $\|Az\|^2 \ge 0$, we obtain $\|z\|^2 = 0$ which implies that z = 0, i.e., x = y.
- 3. B is indeed onto. That is because from the first result, ran $B = \overline{\operatorname{ran} B}$, and the latter equals $(\ker B^*)^{\perp}$. But $B^* = B$ and B is injective, so $(\ker B^*)^{\perp} = \mathcal{H}$.
- 4. Yes, it is possible. Consider $\mathcal{H}=L^2(0,1)$ and $A:\mathcal{H}\to\mathcal{H}$ defined by $Af(x):=\int_0^x f(y)\,\mathrm{d}y$, which is obviously linear. Since $L^2(0,1)\subset L^1(0,1)$ (proof: $\int_0^1 |f(y)|\,\mathrm{d}y \leq \sqrt{\int_0^1 |f(y)|^2\,\mathrm{d}y} = \|f\|$ by Cauchy-Schwarz) we have

$$||Af||^{2} = \int_{0}^{1} |Af(x)|^{2} dx = \int_{0}^{1} \left| \int_{0}^{x} f(y) dy \right|^{2} dx$$

$$\leq \int_{0}^{1} \left(\int_{0}^{x} |f(y)| dy \right)^{2} dx$$

$$\leq \int_{0}^{1} \left(\int_{0}^{1} |f(y)| dy \right)^{2} dx$$

$$\leq \int_{0}^{1} ||f||^{2} dx = ||f||^{2}$$

so A is defined on all of \mathcal{H} and is bounded with norm $||A|| \leq 1$. However its range is not closed. To see this, first note that every function in the range of A is absolutely continuous (continuous with L^1 derivative) and vanishes in the limit $x \downarrow 0$. Consider the sequence $\{f_n(x) := n\chi_{(0,n^{-1})}(x)\}_{n=1}^{\infty}$ of piecewise constant functions (χ is the characteristic function of the indicated interval). Obviously $f_n \in \mathcal{H}$ for all n. By direct computation,

$$Af_n(x) = \begin{cases} nx, & 0 < x \le n^{-1} \\ 1, & n^{-1} \le x < 1. \end{cases}$$

It is easy to see that $Af_n \to 1$ (limit is the constant function $1 \in \mathcal{H}$) in the $L^2(0,1)$ sense. However the constant function 1 does not vanish as $x \downarrow 0$ so it is not in the range of A. So the range of A is not closed.

Problem 5 Determine whether for every $f \in L^2(\mathbb{R})$ there is a unique solution $u \in L^2(\mathbb{R})$ of

$$u(x) + \int_{\mathbb{R}} e^{-\frac{1}{2}(x-y)^2} u(y) dy = f(x),$$

and prove it. If the answer is in the affirmative, give a formula for u(x) in terms of f.

Solution

We note that the integral operator has a convolution kernel, so we take the Fourier transform on $L^2(\mathbb{R})$:

$$\hat{u}(k) + \widehat{e^{-\frac{1}{2}x^2}}(k)\hat{u}(k) = \hat{f}(k).$$

But the kernel is a positive Gaussian so its Fourier transform is as well:

$$\widehat{e^{-\frac{1}{2}x^2}}(k) = Ce^{-hk^2}$$

for some positive constants C > 0, h > 0 (depending on the normalization of the Fourier transform). Therefore,

$$\hat{u}(k) = \frac{\hat{f}(k)}{1 + Ce^{-hk^2}}.$$

The right-hand side is in $L^2(\mathbb{R})$, because \hat{f} is by Plancherel, and

$$|\hat{u}(k)| < |\hat{f}(k)|$$

because $Ce^{-hk^2} > 0$. Therefore, $\hat{u} \in L^2(\mathbb{R})$, and is uniquely determined. By Plancherel again, $u \in L^2(\mathbb{R})$ is also uniquely determined. This proves unique solvability. A formula for u(x) is given by inverse Fourier transform.