Applied Functional Analysis QR Exam - August 2021

Problem 1 Consider the sequence of integrable functions (fy,)n>1, where

on3/2y

fn  RoR, folx) = —W,

n=1,2,.... (1)
1. Prove that the sequence (f,)n>1 converges in the sense of distributions to §’(x), the derivative of the
Dirac delta distribution.

2. Does the sequence (fy)n>1 converge pointwise? Does it converge uniformly?

Solution
1. Each function in the sequence generates a regular distribution i.e., a continuous linear functional on
the space D of test functions, denoted by

) = [ le)plo)is, Vo eD.
We must prove that
li_>m (fn,p) = —¢'(0), Yo € D.

We are interested in test functions ¢ whose support contain the origin. If that is not the case, it is easy to
see from the calculations below that the limit is zero. Let ¢ be a test function with support contained in
[—a, ], where «, 8 > 0. Note that
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and use integration by parts to get
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and the support of ¢, we get

ot + 0 = [ [0 - o)
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Then, using that

Taking absolute values and using the triangle inequality,
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The first two integrals can be evaluated explicitly,
/_O‘ vn dp — 1 arctan(ay/n)
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and both tend to 0 as n — co. We also have by the mean value theorem that there exists a constant C' > 0
such that

¥'(0) = ¢'(2)| < Cla|, @ €[-0a,B].
Here we used that ¢" () is continuous (by definition of D) and thus bounded on the compact interval [—«;, 3].
Therefore,
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which tends to 0 as n — oco. We now have the result.
2. The sequence (f,),>1 converges pointwise to the function 0. Indeed, f,(0) = 0 by definition and for
any = # 0 we have

2|x|
7(n=3/% + nl/ig)?

|fn ()] =

— 0, asn— 0.

However the convergence is not uniform, because if it was, then (f,),>1 would have converged to the zero
distribution.

Problem 2
1. Let g : X — X be a mapping of a Banach space X into itself. Suppose that there exists a closed ball
B(zg, R) contained in X, centered at x, and of radius R, where g satisfies
lg(x) =g < Cllz—yll,  Va,y € B(xo, R), (2)
for a constant C' € (0,1). Suppose also that
l9(x0) — o] < (1 = C)R. 3)

Prove that the sequence (x,,),>1 in X, defined by z,, = g(x,—1) for all n > 1, converges to a point
x € B(zg, R), which is the unique fixed point of g(z) in the closed ball.

2. Use the result above to set up an iteration for finding a root of the polynomial 2% — 4z — 1.

Solution
1. We know by assumption (3) that xg and z; are in the ball B(zg, R). Let us show that the whole sequence
lies in the ball. We have from (2)-(3) and the triangle inequality that

lze — zo|| = |lg(z1) — g(z0) + g(z0) — 20| < Cllz1 — 20| + |]71 — 0|
=1+0)|=x —x||—w|\m —xH<(1—C2)R<R
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and thus zo € B(zg, R).
We proceed inductively
Hypothesis: Suppose that

(1-C7)

= 27 _ _C
Gog -l < (1-C)R,

[l — 2ol <
for 5 =1,2,...,n. This means in particular that x; € B(zo, R) for j =1,...,n.
Inductive step: For x,,11 we have using the hypotesis and (2) that

[2nt1 = znll = llg(zn) = g(@n-)| < Cllzn — 2nal = Cllg(zn—1) — glzn-2)|
S CQHZEn,l — .’[n,QH - S C"||x1 — :c0||,

and therefore, by the triangle inequality, the hypothesis and (3) we get

(1-cn)
1-0)

[Zn+1 — 2ol < [|Tnt1 — zull + |20 — 20|l < C™ |71 — 20| + |21 — 2ol

This proves, by the principle of induction, that z,, € B(zo, R) for all n > 1.
We also have that the sequence (z,,),>1 is Cauchy, because for all m >n > 1,

12m = Zall < 12m = Zmorll + - [ng1 = Zall < (C™ + ...+ C")|l21 — o
Cn(l _ Cm—n+1)
1-C

:C”(1++Cm_")||m1 —.Z‘QH = ||$1 —.130” < C"R.

Since C™ — 0 as n — oo, for all € > 0, there exists natural number N such that

€
"< —, Vn > N,
R "=
and therefore, by the above,
|Xm — znll <e, VYm >n>N.

The sequence is indeed Cauchy and since X is complete, there is x € X such that lim,, ,. x,, = x. But since
the sequence is in the closed ball B(xg, R), we must have z € B(zg, R).
Obviously, g is continuous in B(zg, R) by (2), so

= lim 2,41 = lim g(z,) =g( lim z,) = g(z),
n— oo n—oo n—oo

so x is a fixed point of the mapping ¢ in B(zg, R). It is trivial to show that there is no other fixed point,
because if there were, call it £, we would have

[z =&l =llg(@) =g < Cllz =&l = A=)z = ¢l <0 = |lz = &[ =0 =z =¢.
We found the unique fixed point of the mapping g(z) restricted to B(zg, R).

2. The polynomial 3 — 4x — 1 has three real roots. We proceed as above, with xy = 0, which is not a
root, and X = [~32, 3]. Note that f(z) = 2> — 4z — 1 satisfies

T 2032
3 3
f(z) <°<f(‘2)



so there is a root in X. Let us define the function

1
X=X =
9: X=X, g(a)=—5—;
and note that it satisfies
ly? — 2| =]+ ly] 2
— = < —yl < =z — vy, Vz,y € [—1,1]. 4
l9(z) — g(y)| a— a7 = (4_x2)(4_y2)|x yl < glz—yl z,y €[-1,1] (4)
Thus, we can apply the result at part 1, with 29 = 0, the closed ball B(xg, R) = [-1,1] and C = 2/9 to
conclude that the iteration )
Tnt1 = g(an) = 21 n =1,
converges to the fixed point x of g in [—1, 1]. That is the root we look for, because
1 2 3
x=g(x)= x2_4:>(x —4r—1=2"—4z—-1=0.

Here’s an alternate solution (maybe more obvious). One could write 23 —4x —1 = 0 in the form z = g(x)

with g(z) := 4(2® — 1). Then we have

l9(2) — gW)| = 112 + @y + 2]z — yl.
If we take zo = 0, then on B(zo, R) we have |g(z) — g(y)| < 3R?*|z — y| = Clz — y| with C := 3R2. So for
the contraction condition C' € (0,1) to hold we assume that R < 2/+/3. Also, from zq = 0 we have
|g(1‘0) - xo\ = i-

Therefore to satisfy the conditions we need to find some R € (0,2/v/3) such that (1 - C)R=R— 3R> > 1.

Obviously R — %RS vanishes at the endpoints R = 0,2/v/3 and is positive in between. By the quadratic
formula, the critical points are R = £2/3, so there is exactly one critical point, a local maximizer, in
(0,2/4/3). At the maximizing point,

2

(1= C)R|g_yss = R — %Rg‘R:2/3 = (3

2
) =5>1

So if we take the radius of the ball to be R = 2/3, then all of the hypotheses hold and the iteration converges
to a unique root in the ball.

Problem 3 Consider the linear operator L : 2 — ¢2 defined on the Hilbert space of square summable

sequences by

3 ) 2
L.TZ(J s Vo= f')'>1€f. (5)
%) ()2
Find the point spectrum, the continuous spectrum and the residual spectrum of L.
Solution
We begin by showing that L is a compact operator: Consider the sequence of operators (L,,),>1, defined by
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L, : 0% 02, Lnx:< . L)
VAT

07> s Vr= (fj)jzl S 2.

These operators are bounded, because
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and since they have finite dimensional range, they are compact. We then have

(L — L,)z||* = i M<; i ‘§,|2<M Vo= (&)1 € 2
, i Tn+1l. RN 7= ’
Jj=n+1 Jj=n-+1

which implies that in the operator norm we have

1
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”L - Ln” <

Therefore, L,, converges to L uniformly (in operator norm) and the limit is compact.

Note that L is also a self-adjoint operator, so its residual spectrum must be empty. From the spectral
theorem we know that the spectrum o (L) is the union of the point spectrum o, (L) and {0}. Clearly 0 is not
an eigenvalue, because Lx = 0 is possible only if = 0. Thus, L has the continuous spectrum o.(L) = {0}.
The point spectrum consists of the eigenvalues A\; = 1/1/j, for j = 1,2,..., for the eigenvectors z; having
entry 1 in the j—th place and zero everywhere else.

Problem 4 Let A be a bounded linear operator defined on a Hilbert space H, and let B : H — H,

B :=1+ A*A, where A* denotes the adjoint of A.

1.

Show that ran B is closed.

. Is B injective? Prove or find a counterexample.

2
3.
4

Is B onto? Again prove or find a counterexample.

. Can A fail to have a closed range? Prove or find a counterexample.

Solution

To show that ran B is closed, we will prove that B is bounded away from zero. Note that given x € H,
|Bz||?> = (Bz,Bz) = (v + A*Az,x + A*Az) = (z,2) + (v, A*Az) + (A* Az, x) + (A* Az, A* Az) =
|lz||* + 2(Az, Ax) + ||A* Az|)? = ||z||* + 2||Az||* + ||A* Az||?> > ||z||*>. Therefore ||Bz| > ||z| proving
that B is bounded below. This is equivalent to ran B being closed and Bz = 0 if and only if x = 0.

The same argument also proves that B is injective. However, here is a direct proof of the latter: suppose
that Bx = By for z,y € H. Then Bz = 0 where z := 2 —y. Now using Bz = z + A*Az = 0, we get
217 = (2,2) = (—A*Az,2) = —(A* Az, 2) = —(Az, Az) = —||Az||%. Since ||2]|> > 0 and ||Az]]*> > 0, we
obtain ||z]|> = 0 which implies that z = 0, i.e., z = y.

B is indeed onto. That is because from the first result, ran B = ran B, and the latter equals (ker B*)*.
But B* = B and B is injective, so (ker B*)* = H.

. Yes, it is possible. Consider # = L?(0,1) and A : H — H defined by Af(x) := f; f(y) dy, which is

obviously linear. Since L2(0,1) C L'(0,1) (proof: fol |f(y)dy < \/fol If(y)|12dy = | f|| by Cauchy-
Schwarz) we have
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so A is defined on all of # and is bounded with norm ||A|| < 1. However its range is not closed. To
see this, first note that every function in the range of A is absolutely continuous (continuous with
L' derivative) and vanishes in the limit z | 0. Consider the sequence {fn(z) = nx(,-1)(%)}3,
of piecewise constant functions (x is the characteristic function of the indicated interval). Obviously
fn € H for all n. By direct computation,

Afn(x) =

ne, 0<z<n!
1, n~l<z<l.

It is easy to see that Af, — 1 (limit is the constant function 1 € H) in the L?(0, 1) sense. However
the constant function 1 does not vanish as x | 0 so it is not in the range of A. So the range of A is not
closed.

Problem 5 Determine whether for every f € L?(R) there is a unique solution v € L?(R) of

u(w) + / e~ HE0 y(y) dy = f(),

and prove it. If the answer is in the affirmative, give a formula for u(z) in terms of f.

Solution
We note that the integral operator has a convolution kernel, so we take the Fourier transform on L?(RR):

k) + o— 3% (kya(k) = f(k).

But the kernel is a positive Gaussian so its Fourier transform is as well:
—_—

e~ 22° (k) = Ce ¥’

for some positive constants C > 0, h > 0 (depending on the normalization of the Fourier transform).
Therefore,

) f(k
008) =

The right-hand side is in L?(R), because f is by Plancherel, and
(k)| < |f (k)]

because Ce™ " > 0. Therefore, 4 € L?(R), and is uniquely determined. By Plancherel again, u € L*(R)
is also uniquely determined. This proves unique solvability. A formula for u(z) is given by inverse Fourier
transform.



