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Consider the heat equation u; = ug, for 0 < £ < 1 and ¢t > 0, supplemented with the boundary
conditions
w(0,t) + 2uz(0,t) =0 and u(l,t) + 2u,(1,¢) =0,

and the initial condition
u(z,0) = f(z).
The boundary condition at £ = 1 is of the form of Newton’s law of cooling; the rate that heat escapes
from the rod at this end is proportional to the temperature at the end of the rod. On the other hand,
the boundary condition at x = 0 is “backwards”; the rate that heat enters the rod at this end is
proportional to the temperature at the end of the rod.
(a) Find the solution for general f(z) € L?(0,1).

(b) If f(x) is a piecewise smooth function having jump discontinuities at several points in the interval
(0,1), how many of the derivatives 0™u/dz™ will be continuous functions of z for ¢ > 07 Why?

(¢) What is the solution in the special case when f(z) = 1?7 Give full details. Describe the solution
asymptotically as ¢t — oo.

(d) Consider the heat equation with the modified boundary conditions
w(0,t) + 2uz(0,t) =1 and u(l,t) + 2u.(1,t) =1,

but with zero initial temperature: u(z,0) = 0. Show how the solution of this problem is related
to the solution of part (c).

Consider the Laplacian V? = 82 + 82 + 82 acting on functions of x = (z,y, 2) € R*. Define

where r = \/z2 + y2 + 22 with the parameter & > 0.

(a) Prove, in the sense of distributions, that (—=V? + k2)G(x) = 4md(x). You may use the fact
that in spherical coordinates (using the standard notation z = r sin 6 cos ¢, y = r sin 8 sin ¢, and

z =rcosb),
2 _ 1 2 1 - 1 2
Vif(x) = 3 Or(r’o.f) + 3 Sin069(51n069f) + = sin206¢f'

(b) Find a solution of the inhomogeneous equation (—V? + k2)® = p where p = p(r) is a function of
r alone with suitable decay for large r. Show that if p(r) = 0 for r > R, then there is a solution
® that for » > R is of the form ®(x) = MG (x) for some constant M. Give a formula for M in
terms of the function p(r).

(a) Let {f.} be a sequence in L?(a,b). Suppose that f, — f in L?(a,b) as n — oo, and show that
for every g € L?(a,b), (fn,9) = {f,g) as n — oc.

(b) Show that for all f,g € L?(a,b),
‘Ilfll _ ||g||‘ <IIf =gl

(c) Prove that if f, — f in L?(a,b), then ||f,|| = ||f]|- (That is, the L?(a,b) norm is a continuous
functional with respect to convergence in L?(a,b).)



4. In the following V' (z) is a smooth function, periodic on R with period one, restricted to a fundamental
period z € [0,1]. Consider the initial-boundary-value problem u; = V" (2)u + V'(2)u, + uy, with
periodic boundary conditions on [0, 1] and smooth initial data u(z,0) = ug(z).

(a)

Show that
1 1
/ u(z,t)dx = / uo(z) dz
0 0
for all t > 0.
Show that Ce~V(#) is a stationary solution of the partial differential equation for any constant C.

Suppose the solution u(z,t) with positive initial data ug(z) > 0 is smooth for all ¢ > 0. Show
then that u(z,t) > 0 for all ¢ > 0. Hint: consider u;(z,t) at points z where u might vanish.

Consider the functional
1
S[f] = /0 F@)In]e¥ @ f(2)] da

defined for positive functions f(x). Show that
d
= S[u(-, )] <
4 Sfu(, ) <0

and use this, together with the results above, to prove that starting with positive initial data
uo(x) there exists a long-time limit for u(z,t). Compute this limit, and show how it depends on
uo(x).

For each € > 0, the function
1
— o lxl/e
fe(z) : 5e¢
defines a distribution in D'(R) (recall D(R) is the space of test functions in C*°(R) with compact
support) by the usual rule

Fldl= [ @)@ do
assigning a numerical value to each test function ¢(x) € D(R). Prove that
limF, =§
e—0
in D'(R), where ¢ denotes the delta distribution defined on D(R) by d[¢] = ¢(0).
The function f(z) defined by

0, z<0
f(z) =

z 12 x>0,

is in L{,.(R) and thus defines a distribution F by the usual rule

Flg) = /_ " f@)d(a) do = /0 ) 4.

Students of calculus will tell you that f(z) is differentiable for x # 0, and that

0, z<0

——g73/? >0.
5% , T

Unlike f(z), this function blows up fast enough as z — 0 that f'(z) is not in L, .(R). Thus, f'(z)
cannot define a distribution in the same way that f(z) does. Find the distributional derivative
(F")[¢#] and show how it relates to the calculus derivative f'(x).



(c) The distribution F), := e2"4,,, where §,, denotes the delta distribution centered at z = n, may
be considered either as a distribution from the space D'(R), or as a tempered distribution from
the space 8'(R) dual to the space S(R) of Schwartz functions. Prove that F,, — 0 as n — oo
in the sense of convergence in D'(R). Then show (perhaps by finding an appropriate Schwartz
function giving a counterexample) that the sequence {F, } has no limit in the sense of convergence

in S'(R).
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1. Consider the initial-value problem

dy
iy =1 0)=0
V=1 y(0)=0,

which we intend to solve numerically using the difference scheme

Y1 — Yo Yn+1 — Yn-—1
h +y1 ) 2h + Yn )

yOZOa ’I'LZ].

(a) Determine the order of accuracy of the scheme.

(b) If you program and run this scheme on a computer, you will find that the numerical solution
eventually develops a sawtooth oscillation (i.e. a high-frequency, (—1)™ oscillation). Explain why
this happens. Also explain why the exact solution does not have a sawtooth oscillation.

(c) If time step h is reduced, the oscillations occur at a later time. Explain why this happens.

(d) Suggest an alternative (consistent) scheme which will not produce any oscillations, independent
of the time step.

2. Consider the explicit scheme

1 At
ST.L+1 =

1 At
= i 1) ] 3 (8711 + 3;‘11)+m (rfa —r71) s

rit=3 (rf, + Tﬁl”@ (871 — 74 and
where periodic boundary conditions are imposed on the sequences {r}} and {s}} regarding their
dependence on j for each fixed n.

(a) With which system of partial differential equations is this scheme consistent?

(b) Find conditions on At and Az sufficient for this scheme to satisfy the von Neumann stability
condition. Describe how this calculation relates to L2-stability. Also, find the modified equations
for the scheme and show how your stability analysis relates to them.

3. Consider solving the heat equation u; = u,, with boundary conditions u(0,t) = u(1,t) = 0 and the
numerical scheme

At
Wt =l + — (W = 20T )

n _ ,n __
Y it A U uy =un =0.

j—1 J Jj+1
(a) This is an implicit scheme. Hence, to advance the solution from time ¢t = nAt to t = (n + 1)At,
consider the iteration

ntlkl _ on, At ik o bk | ndlk
U SU YA ( o1 T 2u T g ) ;

for £k =10,1,2,3,..., and with u]"-"'l’o arbitrary. The idea is that by repeating this iteration, one
should have u?“ = u;-l+1’°°. Under what conditions on At and Az does convergence occur as
k — oo? Explain.

(b) What is the order of the local truncation error for this scheme?



4. Consider the heat equation u; = w,, approximated by Euler’s method in time ¢ and second-order
centered differences in space x.

(a) Use the energy method to prove that the scheme is conditionally stable in the £2-norm.
(b) Let u(z,0) = sinz, and discretize this initial condition by setting u? = u(jh,0). Find explicitly
both the exact solution u(z,t) for ¢ > 0 and the numerical solution u} for n > 0. Prove that

Ilzig}) ul = u(z,t),

where x = jh, t = nk > 0, and A\ = k/h? > 0 are all held fixed.

(c) Part (b) shows that the scheme converges for any positive value of A, including values for which
the scheme is unstable. Does this contradict the Lax equivalence theorem? Explain.

5. Consider the initial-value problem
y'+w’y=0, y0)=yo, ¥'(0)=y'-

(a) Introducing v = y', write this as a first order system, and obtain the formulas for solving the
problem numerically using Euler’s method with step size h.
(b) Find the region of absolute stability for the numerical method from part (a).

(c¢) Consider instead the implicit numerical method

Yn+1 — Yn + hvn
Un+1 Un — hw2yn+1 ’

What is the order of accuracy of this method?
(d) Find the region of absolute stability of the difference scheme in part (c).



