UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review Examination in Applied Analysis

4 January 2005: Morning Session, 9:00-12:00

- 1. Suppose that f(x) has two continuous derivatives on [0, L], and that f(0) = f(L) = 0.
 - (a) Prove that for the coefficients b_n in the Fourier sine series of f(x), the estimate

$$|b_n| \le \frac{C}{n^2}$$

holds for some C > 0 depending on f but not on n. Give an upper bound for the constant C in terms of the L^2 norm of f''.

- (b) Prove that the mean square (that is, the L^2 norm squared) error in approximating f by the sum of the first N terms in its Fourier sine series is bounded by K/N^3 for some constant K>0 depending on f but not on N. Give an upper bound for the constant K in terms of the constant K from part (a).
- 2. Prove the distributional identity

$$\Delta \frac{1}{r} = -4\pi \delta(\mathbf{x})$$

where $\mathbf{x} = (x, y, z), r = |\mathbf{x}|, \text{ and } \Delta \text{ is the Laplace operator in } \mathbb{R}^3.$

3. Let

$$\mathbf{A} = \frac{1}{2} \left(\begin{array}{cc} 1+e & e-1 \\ e-1 & 1+e \end{array} \right) .$$

- (a) Find $ln(\mathbf{A})$.
- (b) Show that there is some constant C such that

$$C\int_0^\infty \frac{t^{-1/2}\,dt}{t+\mathbf{A}} = \mathbf{A}^{-1/2}\,.$$

Find the value of the constant C. Will C change if A is a different matrix? Explain.

4. Consider the initial/boundary value problem for the heat equation:

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2}, 0 < x < L, t > 0,$$

with boundary conditions T(0,t) = T(L,t) = 0 and initial condition $T(x,0) \equiv 1$.

- (a) Solve this problem by separation of variables.
- (b) Give some interpretation of the fact that the given initial data does not satisfy the boundary conditions. Is this a problem? Why or why not? What happens to the solution from part (a) as $t \downarrow 0$?
- 5. For the heat equation initial/boundary value problem from Problem 4, with more general initial data $T(x,0) = T_0(x)$, give a precise formulation of stability, the notion that "small changes in initial data $T_0(x)$ lead to small changes in the solution." Outline a proof of the statement you formulate.

UNIVERSITY OF MICHIGAN DEPARTMENT OF MATHEMATICS

Qualifying Review Examination in Applied Analysis

4 January 2005: Afternoon Session, 2:00-5:00

1. Let f(x) be a twice continuously differentiable function on [a, b]. Find and prove an upper bound on the error in the numerical approximation

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{N} \sum_{k=1}^{N} f\left(a + \left(\frac{b-a}{N}\right) (k-1/2)\right) ,$$

and thus determine the rate that the error tends to zero as N increases.

2. Consider the two-step predictor method given by

$$y^{n+2} + a_1 y^{n+1} + a_0 y^n = h \left[b_0 f(y^n) + b_1 f(y^{n+1}) \right]$$

for solving numerically the initial-value problem

$$\frac{dy}{dt} = f(y), y(0) = y^0.$$

- (a) Determine the constants a_0 , b_0 , and b_1 in terms of the remaining constant a_1 such that the method has order at least 2.
- (b) For which values of a_1 is the method found in part (a) stable for $f(y) \equiv 0$?

3. For numerical solution of the autonomous equation dy/dt = f(y), consider the following implicit scheme

$$3y^{n+1} - 4y^n + y^{n-1} = 2\Delta t f(y^{n+1}).$$

- (a) Show that the region of absolute stability for this scheme contains the negative real axis.
- (b) Use the Gerschgorin Disk Theorem to estimate the eigenvalues of the banded matrix

$$\underline{\underline{A}} = \begin{pmatrix} -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \ddots & & \vdots \\ 0 & \cdots & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 & -2 \end{pmatrix}.$$

(c) The heat equation $u_t = u_{xx}$ is to be solved with zero boundary conditions by means of a discretization $u_j^n \approx u(j\Delta x, n\Delta t)$ and the scheme

2

$$\frac{3u_j^{n+1} - 4u_j^n + u_j^{n-1}}{2\Delta t} = \frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{\Delta x^2}.$$

Determine conditions on Δt and Δx under which this scheme is stable.

4. Consider the explicit scheme

$$r_{j}^{n+1} = \frac{1}{2} \left(r_{j+1}^{n} + r_{j-1}^{n} \right) + \frac{\Delta t}{2\Delta x} \left(s_{j+1}^{n} - s_{j-1}^{n} \right) \;, \quad \text{ and } \quad s_{j}^{n+1} = \frac{1}{2} \left(s_{j+1}^{n} + s_{j-1}^{n} \right) + \frac{\Delta t}{2\Delta x} \left(r_{j+1}^{n} - r_{j-1}^{n} \right) \;,$$

where periodic boundary conditions are imposed on the sequences $\{r_j^n\}$ and $\{s_j^n\}$ regarding their dependence on j for each fixed n.

- (a) With which system of partial differential equations is this scheme consistent?
- (b) What is the order of the local truncation error for this scheme?
- (c) Find conditions on Δt and Δx sufficient for this scheme to satisfy the von Neumann stability condition.
- (d) Find conditions on Δt and Δx under which this scheme is L^2 -stable.
- 5. Consider solving the heat equation $u_t = u_{xx}$ with boundary conditions u(0,t) = u(1,t) = 0 and the numerical scheme

$$u_j^{n+1} = u_j^n + \frac{\Delta t}{\Delta x^2} \left(u_{j-1}^{n+1} - 2u_j^{n+1} + u_{j+1}^{n+1} \right), \quad u_0^n = u_N^n = 0.$$

(a) This is an implicit scheme. Hence, to advance the solution from time $t = n\Delta t$ to $t = (n+1)\Delta t$, consider the iteration

$$u_j^{n+1,k+1} = u_j^n + \frac{\Delta t}{\Delta x^2} \left(u_{j-1}^{n+1,k} - 2u_j^{n+1,k} + u_{j+1}^{n+1,k} \right) ,$$

for $k=0,1,2,3,\ldots$, and with $u_j^{n+1,0}$ arbitrary. The idea is that by repeating this iteration, one should have $u_j^{n+1}=u_j^{n+1,\infty}$. Under what conditions on Δt and Δx does convergence occur as $k\to\infty$? Explain.

(b) Use the energy method to show that this scheme is stable in L^2 under certain conditions on Δt and Δx . What are these conditions?