Qualifying Review Exam
 Complex Analysis
 January 2024

Notation: $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$
(1) Find all solutions of $\cos z=1+100 z^{2}$ in the unit disk $|z|<1$.

SOLUTION: Using Rouché's Theorem with $100 z^{2}$ as the dominant term we see that $f(z)=1+100 z^{2}-\cos z$ has two zeros in the unit disk, which are entirely accounted for by the double zero at the origin.
(2) Find
$\sup \left\{|f(1)|: f\right.$ is holomorphic on $\mathbb{C} \backslash\{0\}$ and satisfies $\left.|f(z)| \leq 7|z|^{-3 / 2}\right\}$.

SOLUTION: A function f satisfying the conditions must have a removable singularity at infinity and at most a simple pole at the origin, hence f must be rational. Since the extended f must have at least a double zero at infinity and there is no room to balance these with two poles, f must be identically zero. Hence the desired sup is zero.
(3) Let $f_{k}: \mathbb{D} \rightarrow \mathbb{C}$ be a sequence of holomorphic functions forming a normal family (that is to say, every subsequence of $\left(f_{k}\right)$ has a further subsequence convering uniformly on each compact subset of $\mathbb{D})$. Further, let $h_{k}: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic functions satisfying $h_{k}(0)=$ 0 . Prove that the functions

$$
g_{k}(z)=f_{k}\left(h_{k}(z)\right)
$$

form a normal family.

SOLUTION: The normality condition on the f_{k} is equivalent to the condition that for $0<r<1$ there is M_{r} so that $\left|f_{k}(z)\right| \leq M_{r}$ when $|z| \leq r$. By Schwarz's Lemma $\left|h_{k}(z)\right| \leq r$ when $|z| \leq r$. Combining these facts we have $\left|g_{k}(z)\right| \leq M_{r}$ when $|z| \leq r$. Thus the g_{k} form a normal family.
(4) Let $D_{1}, D_{2} \subset \mathbb{C}$ be disks with the property that the circles $\operatorname{Bd} D_{1}, \operatorname{Bd} D_{2}$ intersect in exactly two points. Under what additional hypothesis will there exist a bijective rational map from $D_{1} \cap D_{2}$ to \mathbb{D} ?

SOLUTION: The interior angle of intersection must be of the form π / n for some natural n so that it can be converted to π by a rational function with derivative vanishing to order n at the intersection points p_{1}, p_{2}.

If this condition holds then the desired map can be constructed by composing maps of the form

$$
\begin{aligned}
& z_{1}=e^{i \theta} \frac{z-p_{1}}{z-p_{2}} \quad \text { [mapping to sector with } \mathbb{R}_{+} \text {as bottom edge] } \\
& z_{2}=z_{1}^{n} \\
& w=\frac{z_{2}-i}{z_{2}+i}
\end{aligned}
$$

(5) Suppose that f is holomorphic on $\{z \in \mathbb{C}:|z|>r\}$ for some $r<1$. Suppose further that $z f(z) \rightarrow 1$ as $z \rightarrow \infty$.
(a) Evaluate $\int_{|z|=1} z f^{\prime}(z) d z$.
(b) Show that $\int_{|z|=1}\left|f^{\prime}(z)\right||d z| \geq 2 \pi$.
(c) When does equality hold in (b)?

SOLUTION:

(a) We have $f(z)=\frac{1}{z}+a_{0}+a_{1} z+\ldots$ and $z f^{\prime}(z)=-\frac{1}{z}+a_{1} z+\ldots$. Thus

$$
\int_{|z|=1} z f^{\prime}(z) d z=-2 \pi i
$$

(b) This follows from

$$
2 \pi=\left|\int_{z \mid=1} z f^{\prime}(z) d z\right| \leq \int_{|z|=1}\left|f^{\prime}(z)\right||d z| .
$$

Remark: Note that $\int_{|z|=1}\left|f^{\prime}(z)\right||d z|$ is the length of the image of the unit circle.
(c) From (a) we have

$$
2 \pi=\int_{0}^{2 \pi} \operatorname{Re}\left(e^{i t} f^{\prime}\left(e^{i t}\right) \cdot e^{i t}\right) d t \leq \int_{|z|=1}\left|f^{\prime}(z)\right||d z|
$$

with equality if and only if $e^{i t} f^{\prime}\left(e^{i t}\right) \cdot e^{i t}$ is non-negative.
By Schwarz reflection, $\phi(z) \stackrel{\text { def }}{=} z^{2} f^{\prime}(z)$ extends to a holomorphic function on \mathbb{C} satisfying $\phi(z)=\overline{\phi(1 / \bar{z}})$. Thus $\phi(0)=-1=\phi(\infty)$ and in fact $\phi(z)=-1$ for all z. Thus $f^{\prime}(z)=-\frac{1}{z^{2}}$ and $f(z)=\frac{1}{z}+C$; original limit condition requires $C=0$.

