Qualifying Review Exam
 Complex Analysis
 January 2024

Notation: $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$
(1) Find all solutions of $\cos z=1+100 z^{2}$ in the unit disk $|z|<1$.
(2) Find
$\sup \left\{|f(1)|: f\right.$ is holomorphic on $\mathbb{C} \backslash\{0\}$ and satisfies $\left.|f(z)| \leq 7|z|^{-3 / 2}\right\}$.
(3) Let $f_{k}: \mathbb{D} \rightarrow \mathbb{C}$ be a sequence of holomorphic functions forming a normal family (that is to say, every subsequence of $\left(f_{k}\right)$ has a further subsequence converging uniformly on each compact subset of \mathbb{D}). Further, let $h_{k}: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic functions satisfying $h_{k}(0)=0$. Prove that the functions

$$
g_{k}(z)=f_{k}\left(h_{k}(z)\right)
$$

form a normal family.
(4) Let $D_{1}, D_{2} \subset \mathbb{C}$ be disks with the property that the circles $\operatorname{Bd} D_{1}$, $\operatorname{Bd} D_{2}$ intersect in exactly two points. Under what additional hypothesis will there exist a bijective rational map from $D_{1} \cap D_{2}$ to \mathbb{D} ?
(5) Suppose that f is holomorphic on $\{z \in \mathbb{C}:|z|>r\}$ for some $r<1$. Suppose further that $z f(z) \rightarrow 1$ as $z \rightarrow \infty$.
(a) Evaluate $\int_{|z|=1} z f^{\prime}(z) d z$.
(b) Show that $\int_{|z|=1}\left|f^{\prime}(z)\right||d z| \geq 2 \pi$.
(c) When does equality hold in (b)?

