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Solutions

Problem 1: Let E be a measurable subset of [0, 1]. Suppose there exists α ∈ (0, 1)
such that

m(E ∩ J) ≥ α ·m(J) for all subintervals J of [0, 1] .

Prove that m(E) = 1.

Solution 1: Let F = [0, 1] \ E. Then

m(F ∩ J) ≤ (1− α) ·m(J) for all subintervals J of [0, 1] .

Assume that m(F ) > 0 and choose a cover of F by intervals Jn, n ∈ N such that
∞∑
n=1

m(Jn) ≤ (1 + α)m(F ).

Then

m(F ) = m

(
F ∩

(
∞⋃
n=1

Jn

))
≤

∞∑
n=1

m (F ∩ Jn) ≤ (1−α)
∞∑
n=1

m (Jn) ≤ (1−α2)m(F ).

This contradiction implies that m(F ) = 0, and thus m(E) = 1.

Solution 2: By the Lebesgue differentiation theorem,

m(E ∩ (a− ε, a+ ε)

2ε
→ 1E(a) for almost all a ∈ (0, 1)

as ε→ 0. Since the assumption implies that

lim inf
ε→0

m(E ∩ (a− ε, a+ ε)

2ε
≥ α for all a ∈ (0, 1),

1E = 1 a.e. on [0, 1] which means that m(E) = 1.

Problem 2: Let f, g ∈ L1(0, 1). Assume for all functions φ ∈ C∞([0, 1]) with
φ(0) = φ(1) that ∫ 1

0

f(t)φ′(t) dt = −
∫ 1

0

g(t)φ(t) dt .

Show that f(·) is absolutely continuous and f ′ = g.

Solution: Let a, b ∈ (0, 1), a < b. Let ε > 0 be such that

ε < min

(
a

2
,
b− a

2
,
1− b

2

)
.



Define the function φε : (0, 1)→ R by

φε(x) =


x−a+ε

2ε
, if x ∈ [a− ε, a+ ε]

1, if x ∈ (a+ ε, b− ε)
1− x−b+ε

2ε
, if x ∈ [b− ε, b+ ε]

0, otherwise.

We can find a sequence of C∞([0, 1]) functions ψn with ψn(0) = ψn(1) = 0 con-
verging to φε in the L∞ norm. In addition to it, the functions ψn can be chosen
so that

ψ′n →
1

2ε

(
1[a−ε,a+ε] − 1[b−ε,b+ε]

)
a.e. and ‖ψ′n‖∞ ≤

1

ε
.

Applying the Lebesgue dominated convergence theorem, we obtain

1

2ε

(∫ a+ε

a−ε
f(t) dt−

∫ b+ε

b−ε
f(t) dt

)
= −

∫ 1

0

g(t)φε(t) dt.

Letting ε → 0 and using the Lebesgue differentiation theorem for the left hand
side and the Lebesgue dominated convergence theorem for the right hand side, we
conclude that

f(a)− f(b) = −
∫ b

a

g(t) dt

for almost all a, b ∈ (0, 1), a < b. Since g ∈ L1(0, 1) the result follows.

Problem 3: Let {gn} be a sequence of measurable functions on [0, 1] such that

(a) |gn(x)| ≤ C for a.e. x ∈ [0, 1],

(b) limn→∞
∫ a

0
gn(x) dx = 0 for all a ∈ (0, 1).

Prove that if f ∈ L1(0, 1) then

lim
n→∞

∫ 1

0

f(x)gn(x) dx = 0 .

Solution: Let

V = {f ∈ L1(0, 1) : lim
n→∞

∫ 1

0

f(x)gn(x) dx = 0}.

Then V is a closed linear subspace of L1(0, 1). Indeed, the linearity is obvious. To
show that V is closed, take f ∈ L1(0, 1), and let h ∈ V . Then∣∣∣∣lim sup

n→∞

∫ 1

0

f(x)gn(x) dx

∣∣∣∣ ≤ lim sup
n→∞

∫ 1

0

|f(x)− h(x)| · |gn(x)| dx ≤ C‖f − h‖1.

If f ∈ cl(V ), then the right hand side can be made arbitrarily small which implies
that f ∈ V .



By the assumption, 1[1,a] ∈ V for any a ∈ [0, 1]. Hence, the indicator of any
finite union of intervals in contained in E. Therefore, 1E ∈ F for any measurable
set E as the indicators of such sets can be approximated arbitrarily well by the
indicators of finite unions of intervals in L1 norm. This in turn implies that any
simple function belongs to V , and thus V = L1(0, 1).

Problem 4: Let (X,A, µ) be a finite measure space. Let {fn}∞n=1 ⊂ L2(µ) be a
sequence of functions such that fn → f a.e. and‖fn‖2 ≤ M for all n ∈ N. Prove
that

∫
X
fn dµ→

∫
X
f dµ.

Solution: Let ε > 0. By Egoroff’s theorem, we can find E ⊂ X with µ(Ec) < ε
such that fn → f uniformly on E. Then by Cauchy-Schwarz inequality,

lim sup
n→∞

‖fn − f‖1 ≤ lim sup
n→∞

∫
E

|fn − f | dµ+ sup
n→∞

∫
Ec

|fn − f | dµ

≤
(
µ(Ec)

)1/2(∫
Ec

|fn − f |2 dµ
)1/2

≤ 2M
√
ε.

Since ε is arbitrary, the result follows.

Problem 5: Let A ⊂ {(x, y) ∈ R2 : |x| + |y| ≤ 1} be a measurable set with the
two-dimensional Lebesgue measure m2(A) ≥ 1. For x ∈ [−1, 1], denote Ax = {y ∈
[−1, 1] : (x, y) ∈ A}. Prove that there exists x ∈ [−1, 1] such that

m1(Ax) ≥ 2−
√

2.

Solution: Let a ∈ [0, 1]. Then m(Ax) ≤ 2(1− |x|) for any x ∈ [−1, 1]. Hence,

1 ≤ m2(A) =

∫ −a
−1

m(Ax) dx+

∫ a

−a
m(Ax) dx+

∫ 1

a

m(Ax) dx

≤ 2

∫ 1

a

2(1− x) dx+

∫ a

−a
m(Ax) dx

≤ 2(1− a)2 + 2a max
x∈[−a,a]

m(Ax).

This implies that

max
x∈[−a,a]

m(Ax) ≥ 1− 2(1− a)2

2a

for any a ∈ (0, 1). Optimizing the last expression over a, we get the required
bound.


