Department of Mathematics, University of Michigan Analysis Qualifying Exam, January 8, 2022 Morning Session, 9.00 AM-12.00

Problem 1: Let *E* be a measurable subset of [0, 1]. Suppose there exists $\alpha \in (0, 1)$ such that

 $m(E \cap J) \geq \alpha \cdot m(J)$ for all subintervals J of [0,1].

Prove that m(E) = 1.

Problem 2: Let $f, g \in L^1(0, 1)$. Assume for all functions $\phi \in C^{\infty}([0, 1])$ with $\phi(0) = \phi(1)$ that

$$\int_0^1 f(t)\phi'(t) dt = -\int_0^1 g(t)\phi(t) dt$$

Show that $f(\cdot)$ is absolutely continuous and f' = g.

Problem 3: Let $\{g_n\}$ be a sequence of measurable functions on [0, 1] such that

(a) $|g_n(x)| \le C$ for a.e. $x \in [0, 1]$,

(b) $\lim_{n\to\infty} \int_0^a g_n(x) dx = 0$ for all $a \in (0,1)$.

Prove that if $f \in L^1(0,1)$ then

$$\lim_{n \to \infty} \int_0^1 f(x) g_n(x) \, dx = 0 \, .$$

Problem 4: Let (X, \mathcal{A}, μ) be a finite measure space. Let $\{f_n\}_{n=1}^{\infty} \subset L_2(\mu)$ be a sequence of functions such that $f_n \to f$ a.e. and $||f_n||_2 \leq M$ for all $n \in \mathbb{N}$. Prove that $\int_X f_n d\mu \to \int_X f d\mu$.

Problem 5: Let $A \subset \{(x, y) \in \mathbb{R}^2 : |x| + |y| \leq 1\}$ be a measurable set with the two-dimensional Lebesgue measure $m_2(A) \geq 1$. For $x \in [-1, 1]$, denote $A_x = \{y \in [-1, 1] : (x, y) \in A\}$. Prove that there exists $x \in [-1, 1]$ such that

$$m_1(A_x) \ge 2 - \sqrt{2}$$