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1. Let α > 0 be a real number.

(a) Prove that if α ≤ 1, then there exists an analytic function f on the unit
disc such that f( 1

n ) = 1
n+α for all integers n ≥ 1.

(b) Prove that if α > 1 and f is an analytic function on the unit disc, then
there exist only finitely many integers n ≥ 1 such that f( 1

n ) = 1
n+α .

(a) Simply take f(z) = z
1+αz . This is analytic on the unit disc since 1+αz 6= 0

there, and it has the required properties.
(b) The function g(z) = z

1+αz is analytic near the origin and satisfies g( 1
n ) =

1
n+α for all large enough integers n. Now suppose there exists an analytic

function f on the unit disc such that f( 1
n ) = 1

n+α for infinitely many
integers n ≥ 1. The function h = f − g is then analytic near the origin and
satisfies h( 1

n ) = 0 for infinitely many n. Thus h = 0 near the origin, or else
the zeros of h would be isolated. By uniqueness of analytic continuation, we
get f(z) = g(z), but this is a contradiction since g has a pole at z = −1/α,
which lies in the unit disc.

2. Does there exist an entire function f (i.e. f is analytic in the whole complex
plane) such that the inequality

1
2 |z|

3/2 − |z| ≤ |f(z)| ≤ 2|z|3/2 + 7
2 |z|

holds for all z outside a compact set? Justify your answer.

The answer is no, as can be seen using the following argument. Suppose f exists,
and pick R > 0 such that the inequality holds for |z| ≥ R. Pick any z ∈ C and pick
r > R+ |z|. The Cauchy estimates give

|f ′′(z)| ≤ 2!

r2
max
|w−z|=r

|f(w)| ≤ 4(r + |z|)3/2 + 7(r + |z|)
r2

,

which tends to 0 as r →∞. Thus f(z) = az + b for some constants a, b. But then
|f(z)| ≤ |az + b| < 1

2 |z|
3/2 − |z| if |z| is large enough, a contradiction.

3. Find all analytic functions f on the unit disc D such that f(0) = 1, f( 1
2 ) = 3,

and Ref(z) > 0 for all z ∈ D.

The Möbius transformation z 7→ 1−z
1+z takes the right half plane to the unit disc.

Thus the analytic function g(z) := 1+f(z)
1−f(z) sends the unit disc to itself. We have
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g(0) = 1−1
1+1 = 0, so by the Schwarz lemma, |g(z)| ≤ |z| for all z ∈ D. Moreover,

g( 1
2 ) = 1−3

1+3 = − 1
2 , so if z0 = 1

2 , then |g(z0)| = |z0|. The Schwarz lemma then also

gives g(z) = λz for some λ ∈ C with |λ| = 1. Since g( 1
2 ) = − 1

2 we have λ = −1.

Thus g(z) = −z, that is, 1+f(z)
1−f(z) = −z, which amounts to f(z) = 1+z

1−z .

4. Use complex integration to compute the real integral
∫ 2π

0
dθ

2+cos θ .

We compute a complex integral over the unit circle |z| = 1, using the parametriza-
tion z = eiθ, 0 ≤ θ ≤ 2π. Then dθ = dz

iz and cos θ = 1
2 (eiθ + e−iθ) = 1

2 (z + z−1).
Thus

I :=

∫ 2π

0

dθ

2 + cos θ
=

∫
|z|=1

dz
iz

2 + 1
2 (z + z−1)

=
2

i

∫
|z|=1

dz

z2 + 4z + 1
.

Here the integrand has simple poles at −2±
√

3, and no other poles. The pole z+ =
−2 +

√
3 satisfies |z+| < 1 whereas the other one, z− = −2−

√
3 satisfies |z−| > 1.

The residue of the rational function 1
z2+4z+1 at z+ is given by 1

2z++4 = 1
2
√
3
. By

the residue theorem, the requested integral is equal to

I =
2

i
2πi

1

2
√

3
=

2π√
3
.

5. Let D be the (open) square with corners at ±1± i. Find the number of solutions
to the equation ez = 3z2020 in D, counted with multiplicity.

We apply Rouché’s theorem to f(z) = 3z2020 and g(z) = −ez. On the boundary
∂D of the square, we have |z| ≥ 1, and hence |f(z)| ≥ 3, whereas Rez ≤ 1, and
hence |g(z)| ≤ e1 = e. Thus |f(z)| > |g(z)| on ∂D, so by Rouché’s theorem, f
and f + g have the same number of zeros, taken with multiplicity in D. Since f
has 2020 zeros, so has f + g, which means that the equation ez = 3z2020 has 2020
solutions with multiplicity.


